Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

NSC (neural stem cells)/NPC (neural progenitor cells) are multipotent and self-renew throughout adulthood in the SVZ (subventricular zone) of the mammalian CNS (central nervous system). These cells are considered interesting targets for CNS neurodegenerative disorder cell therapies, and understanding their behaviour in vitro is crucial if they are to be cultured prior to transplantation. We cultured the SVZ tissue belonging to newborn rats under the form of NS (neurospheres) to evaluate the effects of Tf (transferrin) on cell proliferation. The NS were heterogeneous in terms of the NSC/NPC markers GFAP (glial fibrillary acidic protein), Nestin and Sox2 and the OL (oligodendrocyte) progenitor markers NG2 (nerve/glia antigen 2) and PDGFRα (platelet-derived growth factor receptor α). The results of this study indicate that aTf (apoTransferrin) is able to increase cell proliferation of SVZ-derived cells in vitro, and that these effects were mediated at least in part by the TfRc1 (Tf receptor 1). Since OPCs (oligodendrocyte progenitor cells) represent a significant proportion of the proliferating cells in the SVZ-derived primary cultures, we used the immature OL cell line N20.1 to show that Tf was able to augment the proliferation rate of OPC, either by adding aTf to the culture medium or by overexpressing rat Tf in situ. The culture medium supplemented with ferric iron, together with aTf, increased the DNA content, while ferrous iron did not. The present work provides data that could have a potential application in human cell replacement therapies for neurodegenerative disease and/or CNS injury that require the use of in vitro amplified NPCs. © 2013 The Author(s).

Registro:

Documento: Artículo
Título:Neural and oligodendrocyte progenitor cells: Transferrin effects on cell proliferation
Autor:Silvestroff, L.; Franco, P.G.; Pasquini, J.M.
Filiación:Cátedra de Química Biológica Patológica, Departamento de Química Biológica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
Instituto de Quimica y Fisicoquimica Biologicas 'Prof. Alejandro C. Paladini' (IQUIFIB), UBA-Consejo Nacional de Investigaciones Científicas y T ́ecnicas (CONICET), Buenos Aires, Argentina
Palabras clave:Nerve/glia antigen 2 (NG2); Oligodendrocyte; Platelet-derived growth factor receptor α (PDGFRα); Progenitor; Proliferation; Transferrin; apotransferrin; ferric ion; glial fibrillary acidic protein; nestin; oligodendrocyte transcription factor 2; platelet derived growth factor alpha receptor; transcription factor Sox2; transferrin; animal cell; animal cell culture; animal experiment; animal tissue; article; cell proliferation; controlled study; culture medium; DNA content; female; immunocytochemistry; immunohistochemistry; in vitro study; male; neural stem cell; neuroblast; newborn; nonhuman; oligodendroglia; protein expression; rat; subventricular zone; Western blotting
Año:2013
Volumen:5
Número:1
Página de inicio:43
Página de fin:62
DOI: http://dx.doi.org/10.1042/AN20120075
Título revista:ASN Neuro
Título revista abreviado:ASN Neuro
ISSN:17590914
CAS:ferric ion, 20074-52-6; nestin, 146315-66-4; transferrin, 82030-93-1
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17590914_v5_n1_p43_Silvestroff

Referencias:

  • Anderson, G., Vulpe, C., Mammalian iron transport (2009) Cell Mol Life Sci, 66, pp. 3241-3261
  • Bloch, B., Popovici, T., Levin, M., Tuil, D., Kahn, A., Transferrin gene expression visualized in oligodendrocytes of the rat brain by using in situ hybridization and immunohistochemistry (1985) Proc Natl Acad Sci USA, 82, pp. 6706-6710
  • Brandsma, M., Jevnikar, A., Ma, S., Recombinant human transferrin: Beyond iron binding and transport (2011) Biotechnol Adv, 29, pp. 230-238
  • Brazel, C., Limke, T., Osborne, J., Miura, I., Cai, J., Pevny, L., Rao, M., Sox expression defines a heterogeneous population of neurosphere-forming cells in the adult murine brain (2005) Aging Cell, 4, pp. 197-207
  • Brewer, G., Torricelli, J., Evege, E., Price, P., Optimized survival of hippocampal neurons in B27-supplemented neurobasalTM, a new serum-free medium combination (1993) J Neurosci Res, 35, pp. 567-576
  • Broadwell, R., Baker-Cairns, B., Friden, P., Oliver, C., Villegas, J., Transcytosis of protein through the mammalian cerebral epithelium and endothelium (1996) Exp Neurol, 142, pp. 47-65
  • Buchet, D., Garcia, C., Deboux, C., Nait-Oumesmar, B., Baron-Van Evercooren, A., Human neural progenitors from different foetal forebrain regions remyelinate the adult mouse spinal cord (2011) Brain, 134, pp. 1168-1183
  • Calzolari, A., Raggi, C., Deaglio, S., Sposi, N., Stafsnes, M., Fecchi, K., Parolini, I., Testa, U., TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway (2006) J Cell Sci, 119, pp. 4486-4498
  • Cao, R., Chen, K., Song, Q., Zang, Y., Li, J., Wang, X., Chen, P., Liang, S., Quantitative proteomic analysis of membrane proteins involved in astroglial differentiation of neural stem cells by SILAC labeling coupled with LC-MS/MS (2012) J Proteome Res, 11, pp. 829-838
  • Connor, J., Menzies, S., Cellular management of iron in the brain (1995) J Neurol Sci, 134, pp. 33-44
  • Chirasani, S., Markovic, D., Synowitz, M., Eichler, S., Wisniewski, P., Kaminska, B., Otto, A., Glass, R., Transferrin-receptor-mediated iron accumulation controls proliferation and glutamate release in glioma cells (2009) J Mol Med, 87, pp. 153-167
  • Dautry-Varsat, A., Receptor-mediated endocytosis: The intracellular journey of transferrin and its receptor (1986) Biochimie, 68, pp. 375-381
  • Dimou, L., Simon, C., Kirchoff, F., Takebayashi, H., Götz, M., Progeny of Olig2-expressing progenitors in the gray and white Matter of the adult mouse cerebral cortex (2008) J Neurosci, 28, pp. 10434-10442
  • Erickson, R., Paucar, A., Jackson, R., Visnyei, K., Kornblum, H., Roles of insulin and transferrin in neural progenitor survival and proliferation (2008) J Neurosci Res, 86, pp. 1884-1894
  • Eriksson, P., Perfilieva, E., Björk-Eriksson, T., Alborn, A., Nordborg, C., Peterson, D., Gage, F., Neurogenesis in the adult human hippocampus (1998) Nat Med, 4, pp. 1313-1317
  • Escobar Cabrera, O., Bongarzone, E., Soto, E., Pasquini, J., Single intracerebral injection of apotransferrin in young rats induces increased myelination (1994) Dev Neurosci, 16, pp. 248-254
  • Escobar Cabrera, O., Zakin, M., Soto, E., Pasquini, J., Single intracranial injection of apotransferrin in young rats increases the expression of specific myelin protein mRNA (1997) J Neurosci Res, 47, pp. 603-608
  • Espinosa de los Monteros, A., Chiapelli, F., Fisher, R., de Vellis, J., Transferrin: An early marker of oligodendrocytes in culture (1988) Int J Dev Neurosci, 6, pp. 167-175
  • Falcão, A., Marques, F., Novais, A., Sousa, N., Palha, J., Sousa, J., The path from the choroid plexus to the subventricular zone: Go with the flow! (2012) Front Cell Neurosci, 6, pp. 1-8
  • Feng, Z., Gao, F., Stem cell challenges in the treatment of neurodegenerative disease (2012) CNS Neurosci Ther, 18, pp. 142-148
  • Foster, L., Phan, T., Verity, A., Bredesen, D., Campagnoni, A., Generation and analysis of normal and shiverer temperature-sensitive immortalized cell lines exhibiting phenotypic characteristics of OLs at several stages of differentiation (1993) Dev Neurosci, 15, pp. 100-109
  • Fu, D., Richardson, D., Iron chelation and regulation of the cell cycle: 2 mechanisms of posttranscriptional regulation of the universal cyclin-dependent kinase inhibitor p21CIP1/WAF1 by iron depletion (2007) Blood, 110, pp. 752-761
  • Gallagher, S., Quantification of DNA and RNA with absorption and fluorescence spectroscopy (2000) Curr Protoc Cell Biol, , A.3D.1-A.3D.8
  • Gögel, S., Gubernator, M., Minger, S., Progress and prospects: Stem cells and neurological diseases (2011) Gene Therapy, 18, pp. 1-6
  • Gould, E., How widespread is adult neurogenesis in mammals? (2007) Nat Rev, 3, pp. 481-488
  • Guardia Clausi, M., Pasquini, L., Soto, E., Pasquini, J., Apotransferrin-induced recovery after hypoxia/ischemic injury on myelination (2010) ASN Neuro, 2, pp. e00048
  • Jablonska, B., Aguirre, A., Raymond, M., Szabo, G., Kitabatake, Y., Sailor, K., Ming, G., Gallo, V., Chordin-induced lineage plasticity of adult SVZ neuroblasts after demyelination (2010) Nat Neurosci, 13, pp. 541-550
  • Kawabata, H., Yang, R., Hirama, T., Vuong, P., Kawano, S., Gombart, A., Koeffler, H., Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family (1999) J Biol Chem, 274, pp. 20826-20832
  • Kim, S., de Vellis, J., Stem cell-based cell therapy in neurological diseases: A review (2009) J Neurosci Res, 87, pp. 2183-2200
  • Kokovay, E., Shen, Q., Temple, S., The incredible elastic brain: How neural stem cells expand our minds (2009) Neuron, 60, pp. 420-429
  • Kriegstein, A., Alvarez-Buylla, A., The glial nature of embryonic and adult neural stem cells (2009) Annu Rev Neurosci, 32, pp. 149-184
  • Leitner, D., Connor, J., Functional roles of transferin in the brain (2012) Biochim Biophys Acta, 1820, pp. 393-402
  • Lois, C., Alvarez-Buylla, A., Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia (1993) Proc Natl Acad Sci USA, 90, pp. 2074-2077
  • Low, C., Liou, Y., Tang, B., Neural differentiation and potential use of stem cells from the human umbilical cord for central nervous system transplantation therapy (2008) J Neurosci Res, 86, pp. 1670-1679
  • Marta, C., Escobar Cabrera, O., Garcia, C., Villar, M., Pasquini, J., Soto, E., Oligodendroglial cell differentiation in rat brain is accelerated by the intracranial injection of apotransferrin (2000) Cell Mol Biol, 46, pp. 529-539
  • Merkle, F., Alvarez-Buylla, A., Neural stem cells in mammalian development (2006) Curr Opin Cell Biol, 18, pp. 704-709
  • Miller, F., Gauthier-Fisher, A., Home at last: Neural stem cell niches defined (2009) Cell Stem Cell, 4, pp. 507-510
  • Mirzadeh, Z., Merkle, F., Soriano-Navarro, M., Garcia-Verdugo, J., Alvarez-Buylla, A., Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain (2008) Cell Stem Cell, 3, pp. 265-278
  • Moos, T., Rosengren Nielsen, T., Skjorringe, T., Morgan, E., Iron trafficking inside the brain (2007) J Neurochem, 103, pp. 1730-1740
  • Morris, C., Candy, J., Keith, A., Oakley, A., Taylor, G., Pullen, R., Bloxham, C., Edwardson, J., Brain iron homeostasis (1992) J Inorg Biochem, 41, pp. 257-265
  • Nait-Oumesmar, B., Picard-Riera, N., Kerninon, C., Decker, L., Seilhean, D., Höglinger, G., Hirsch, E., Baron-Van Evercooren, A., Activation of the subventricular zone in multiple sclerosis: Evidence for early glial progenitors (2007) Proc Natl Acad Sci USA, 104, pp. 4694-4699
  • Nurtjahja-Tjendraputra, E., Fu, D., Phang, J., Richardson, D., Iron chelation regulates cyclin D1 expression via the proteasome: A link to iron deficiency-mediated growth suppression (2007) Blood, 190, pp. 4045-4054
  • Picard-Riéra, N., Decker, L., Delarasse, C., Goude, K., Nait-Oumesmar, B., Liblau, R., Pham-Dinh, D., Evercooren, A., Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice (2002) Proc Natl Acad Sci USA, 99, pp. 13211-13216
  • Potter, G., Rowich, D., Petryniak, M., Myelin restoration: Progress and prospects for human cell replacement therapies (2011) Arch Lmmunol Ther Exp, 59, pp. 179-193
  • Renton, F., Jeitner, T., Cell cycle-dependent inhibition of the proliferation of human neural tumor cell lines by iron chelators (1996) Biochem Pharmacol, 51, pp. 1553-1561
  • Richardson, D., Molecular mechanisms of iron uptake by cells and the use of iron chelators for the treatment of cancer (2005) Curr Med Chem, 12, pp. 2711-2729
  • Richardson, W., Young, K., Tripathi, R., McKenzie, I., Ng2-glia as multipotent neural stem cells-fact or fantasy? (2011) Neuron, 70, pp. 661-673
  • Rivers, L., Young, K., Rizzi, M., Jamen, F., Psachoulia, K., Wade, A., Kessaris, N., Richardson, W., PDGFRA/NG2-positive glia generate myelinating oligodendrocytes and cortical projection neurons in the adult mouse CNS (2008) Nat Neurosci, 11, pp. 1392-1401
  • Schonberg, D., McTigue, D., Iron is essential for oligodendrocyte genesis following intraspinal macrophage activation (2009) Exp Neurol, 218, pp. 64-74
  • Sergent-Tanguy, S., Véziers, J., Bonnamain, V., Boudin, H., Neveu, I., Naveilhan, P., Cell surface antigens on rat neural progenitors and characterization of the CD3 (+)/CD3 (-) cell populations (2006) Differentiation, 74, pp. 530-541
  • Silvestroff, L., Franco, P., Pasquini, J., Apotransferrin: Dual role on adult subventricular zone-derived neurospheres (2012) PLoS ONE, 7, pp. e33937
  • Steegmann-Olmedillas, J., The role of iron in tumour cell proliferation (2011) Clin Transl Oncol, 13, pp. 71-76
  • Tripathi, R., Rivers, L., Young, K., Jamen, F., Richardson, W., NG2 glia generate new oligodendrocytes but few astrocytes in a murine experimental autoimmune encephalomyelitis model of demyelinating disease (2010) J Neurosci, 30, pp. 16383-16390
  • Trounson, A., Thakar, R., Lomax, G., Gibbons, D., Clinical trials for stem cell therapies (2011) BMC Med, 9, p. 52
  • Trowbridge, I., Lopez, F., Monoclonal antibody to transferrin receptor blocks transferrin binding and inhibits human tumor cell growth in vitro (1982) Proc Natl Acad Sci USA, 79, pp. 1175-1179
  • Verity, A., Bredesen, D., Vonderscher, C., Handley, V., Campagnoni, A., Expression of myelin protein genes and other myelin components in an oligodendrocyte cell line conditionally immortalized with a temperature-sensitive retrovirus (1993) J Neurochem, 60, pp. 577-587
  • Wang, J., Pantopoulos, K., Regulation of cellular iron metabolism (2011) Biochem J, 434, pp. 365-381
  • Yu, Y., Kovacevic, Z., Richardson, D., Turning cell cycle regulation with an iron key (2007) Cell Cycle, 6, pp. 1982-1994
  • Zhao, C., Zawadzka, M., Roulois, A., Bruce, C., Franklin, R., Promoting remyelination in multiple sclerosis by endogenous adult neural stem/precursor cells: Defining cellular targets (2008) J Neurol Sci, 265, pp. 12-16

Citas:

---------- APA ----------
Silvestroff, L., Franco, P.G. & Pasquini, J.M. (2013) . Neural and oligodendrocyte progenitor cells: Transferrin effects on cell proliferation. ASN Neuro, 5(1), 43-62.
http://dx.doi.org/10.1042/AN20120075
---------- CHICAGO ----------
Silvestroff, L., Franco, P.G., Pasquini, J.M. "Neural and oligodendrocyte progenitor cells: Transferrin effects on cell proliferation" . ASN Neuro 5, no. 1 (2013) : 43-62.
http://dx.doi.org/10.1042/AN20120075
---------- MLA ----------
Silvestroff, L., Franco, P.G., Pasquini, J.M. "Neural and oligodendrocyte progenitor cells: Transferrin effects on cell proliferation" . ASN Neuro, vol. 5, no. 1, 2013, pp. 43-62.
http://dx.doi.org/10.1042/AN20120075
---------- VANCOUVER ----------
Silvestroff, L., Franco, P.G., Pasquini, J.M. Neural and oligodendrocyte progenitor cells: Transferrin effects on cell proliferation. ASN Neuro. 2013;5(1):43-62.
http://dx.doi.org/10.1042/AN20120075