Artículo

Aidas, K.; Angeli, C.; Bak, K.L.; Bakken, V.; Bast, R.; Boman, L.; Christiansen, O.; Cimiraglia, R.; Coriani, S.; Dahle, P.; Dalskov, E.K.; Ekström, U.; Enevoldsen, T.; Eriksen, J.J.; Ettenhuber, P.; Fernández, B.; Ferrighi, L.; Fliegl, H. (...) Ågren, H. "The Dalton quantum chemistry program system" (2014) Wiley Interdisciplinary Reviews: Computational Molecular Science. 4(3):269-284
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, Møller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms. © 2013 John Wiley & Sons, Ltd.

Registro:

Documento: Artículo
Título:The Dalton quantum chemistry program system
Autor:Aidas, K.; Angeli, C.; Bak, K.L.; Bakken, V.; Bast, R.; Boman, L.; Christiansen, O.; Cimiraglia, R.; Coriani, S.; Dahle, P.; Dalskov, E.K.; Ekström, U.; Enevoldsen, T.; Eriksen, J.J.; Ettenhuber, P.; Fernández, B.; Ferrighi, L.; Fliegl, H.; Frediani, L.; Hald, K.; Halkier, A.; Hättig, C.; Heiberg, H.; Helgaker, T.; Hennum, A.C.; Hettema, H.; Hjertenæs, E.; Høst, S.; Høyvik, I.-M.; Iozzi, M.F.; Jansík, B.; Jensen, H.J.A.; Jonsson, D.; Jørgensen, P.; Kauczor, J.; Kirpekar, S.; Kjærgaard, T.; Klopper, W.; Knecht, S.; Kobayashi, R.; Koch, H.; Kongsted, J.; Krapp, A.; Kristensen, K.; Ligabue, A.; Lutnæs, O.B.; Melo, J.I.; Mikkelsen, K.V.; Myhre, R.H.; Neiss, C.; Nielsen, C.B.; Norman, P.; Olsen, J.; Olsen, J.M.H.; Osted, A.; Packer, M.J.; Pawlowski, F.; Pedersen, T.B.; Provasi, P.F.; Reine, S.; Rinkevicius, Z.; Ruden, T.A.; Ruud, K.; Rybkin, V.V.; Sałek, P.; Samson, C.C.M.; de Merás, A.S.; Saue, T.; Sauer, S.P.A.; Schimmelpfennig, B.; Sneskov, K.; Steindal, A.H.; Sylvester-Hvid, K.O.; Taylor, P.R.; Teale, A.M.; Tellgren, E.I.; Tew, D.P.; Thorvaldsen, A.J.; Thøgersen, L.; Vahtras, O.; Watson, M.A.; Wilson, D.J.D.; Ziolkowski, M.; Ågren, H.
Filiación:Department of General Physics and Spectroscopy, Faculty of Physics, Vilnius University, Vilnius, Lithuania
Department of Chemistry, University of Ferrara, Ferrara, Italy
Aarhus University School of Engineering, Aarhus, Denmark
Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
EMGS ASA, Trondheim, Norway
Department of Chemistry, Aarhus University, Aarhus, Denmark
Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
Norwegian Computing Center, Oslo, Norway
Systematic, Aarhus, Denmark
CTCC, Department of Chemistry, University of Oslo, Oslo, Norway
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
Department of Physical Chemistry and Center for Research in Biological Chemistry, Molecular Materials (CIQUS), University of Santiago de Compostela, Santiago de Compostela, Spain
CTCC, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
Danske Bank, Horsens, Denmark
CSC Scandihealth, Aarhus, Denmark
Department of Theoretical Chemistry, Ruhr-University Bochum, Bochum, Germany
Norwegian Meteorological Institute, Oslo, Norway
Norwegian Defence Research Establishment, Kjeller, Norway
Department of Philosophy, The University of Auckland, Auckland, New Zealand
Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway
Department of Geoscience, Aarhus University, Aarhus, Denmark
University Centre of Information Technology, University of Oslo, Oslo, Norway
VSB - Technical University of Ostrava, Ostrava, Czech Republic
High-Performance Computing Group, UiT The Arctic University of Norway, Tromsø, Norway
Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
KVUC, Copenhagen, Denmark
Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
Australian National University Supercomputer Facility, Canberra, Australia
Jotun A/S, Sandefjord, Norway
Computer Services: Networks and Systems, University of Modena and Reggio Emilia, Modena, Italy
Cisco Systems, Lysaker, Norway
Physics Department, FCEyN-UBA and IFIBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
Sun Chemical, Køge, Denmark
Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
Køge Gymnasium, Køge, Denmark
Institute of Physics, Kazimierz Wielki University, Bydgoszcz, Poland
Department of Physics, University of Northeastern and IMIT-CONICET, Corrientes, Argentina
Department of Theoretical Chemistry and Biology, School of Biotechnology and Swedish e-Science Research Center (SeRC), KTH Royal Institute of Technology, Stockholm, Sweden
Kjeller Software Community, Oslo, Norway
PSS9 Development, Cracow, Poland
Institute of Molecular Science, University of Valencia, Valencia, Spain
Paul Sabatier University, Toulouse, France
Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Karlsruhe, Germany
Danske Bank, Aarhus, Denmark
Danish Technological Institute Nano- and Microtechnology Production, Taastrup, Denmark
VLSCI and School of Chemistry, University of Melbourne, Parkville, Australia
School of Chemistry, University of Nottingham, Nottingham, United Kingdom
School of Chemistry, University of Bristol, Bristol, United Kingdom
CLC bio, Aarhus, Denmark
Department of Chemistry, Princeton University, Princeton, NJ, United States
Department of Chemistry and La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Australia
CoE for Next Generation Computing, Clemson University, Clemson, SC, United States
Palabras clave:Electronic structure; Magnetic resonance; Molecular dynamics; Numerical methods; Quantum theory; Two photon processes; Configuration interactions; Dielectric medium; Frequency dependent; Geometry optimization; Molecular gradient; Molecular properties; Multiconfigurational self-consistent fields; Vibrational study; Quantum chemistry
Año:2014
Volumen:4
Número:3
Página de inicio:269
Página de fin:284
DOI: http://dx.doi.org/10.1002/wcms.1172
Título revista:Wiley Interdisciplinary Reviews: Computational Molecular Science
Título revista abreviado:Wiley Interdiscip. Rev. Comput. Mol. Sci.
ISSN:17590876
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17590876_v4_n3_p269_Aidas

Referencias:

  • Jensen, H.J.A., Ågren, H., Documentation of SIRIUS: A General Purpose Direct Second Order MCSCF Program. Technical Notes TN783, TN784, TN785. Department of Quantum Chemistry, University of Uppsala, Uppsala, Sweden; 1986; Teale, A.M., De Proft, F., Tozer, D.J., Orbital energies and negative electron affinities from density functional theory: insight from the integer discontinuity (2008) J Chem Phys, 129, p. 044110
  • Rinkevicius, Z., Tunell, I., Salek, P., Vahtras, O., Ågren, H., Restricted density functional theory of linear time-dependent properties in open-shell molecules (2003) J Chem Phys, 119, pp. 34-46
  • Oprea, O., Telyatnyk, L., Rinkevicius, Z., Vahtras, O., Ågren, H., Time-dependent density functional theory with the generalized restricted-unrestricted approach (2006) J Chem Phys, 124, p. 174103
  • Jensen, H.J.A., Ågren, H., MCSCF optimization using the direct, restricted step, second order norm-extended optimization method (1984) Chem Phys Lett, 110, pp. 140-144
  • Jensen, H.J.A., Ågren, H., A direct, restricted-step, 2nd-order MC SCF program for large-scale ab initio calculations (1986) Chem Phys, 104, pp. 229-250
  • Jensen, H.J.A., Jørgensen, P., Ågren, H., Efficient optimization of large-scale MCSCF wave-functions with a restricted step algorithm (1987) J Chem Phys, 87, pp. 451-466
  • Jensen, H.J.A., Jørgensen, P., Ågren, H., Olsen, J., 2nd-order Møller-Plesset perturbation-theory as a configuration and orbital generator in multiconfiguration self-consistent-field calculations (1988) J Chem Phys, 88, pp. 5354-5354. , 3834-3839 and 89:-
  • Olsen, J., The initial implementation and applications of a general active space coupled cluster method (2000) J Chem Phys, 113, pp. 7140-7148
  • Olsen, J., Roos, B.O., Jørgensen, P., Jensen, H.J.A., Determinant based algorithms for complete and restricted configuration interaction spaces (1988) J Chem Phys, 89, pp. 2185-2192
  • Havenith, R.W.A., Taylor, P.R., Angeli, C., Cimiraglia, R., Ruud, K., Calibration of the n-electron valence state perturbation theory approach (2004) J Chem Phys, 120, pp. 4619-4625
  • Dyall, K.G., The choice of a zeroth-order Hamiltonian for second-order perturbation theory with a complete active space self-consistent-field reference function (1995) J Chem Phys, 102, pp. 4909-4918
  • Angeli, C., Cimiraglia, R., Evangelisti, S., Leininger, T., Malrieu, J.P., Introduction of n-electron valence states for multireference perturbation theory (2001) J Chem Phys, 114, pp. 10252-10264
  • Olsen, J., (2000) LUCITA, A General Active Configuration Interaction Code, , Aarhus University, Aarhus, Denmark
  • Knecht, S., Jensen, H.J.A., Fleig, T., Large-scale parallel configuration interaction. I. Nonrelativistic and scalar-relativistic general active space implementation with application to (Rb-Ba) + (2008) J Chem Phys, 128, p. 014108
  • Koch, H., Christiansen, O., Kobayashi, R., Jørgensen, P., Helgaker, T., A direct atomic orbital driven implementation of the coupled cluster singles and doubles (CCSD) model (1994) Chem Phys Lett, 228, pp. 233-238
  • Koch, H., Sánchez de Merás, A., Helgaker, T., Christiansen, O., The integral-direct coupled cluster singles and doubles model (1996) J Chem Phys, 104, pp. 4157-4165
  • Rekkedal, J., Coriani, S., Iozzi, M.F., Teale, A.M., Helgaker, T., Pedersen, T.B., Communcation: analytic gradients in the random-phase approximation (2013) J Chem Phys, 139, p. 081101
  • Grüneis, A., Marsman, M., Harl, J., Schimka, L., Kresse, G., Making the random phase approximation to electronic correlation accurate (2009) J Chem Phys, 131, p. 154115
  • Pedersen, T.B., Koch, H., Coupled cluster response functions revisited (1997) J Chem Phys, 106, pp. 8059-8072
  • Christiansen, O., Hättig, C., Jørgensen, P., Response functions from Fourier component perturbation theory applied to a time-averaged quasienergy (1998) Int J Quantum Chem, 68, pp. 1-52
  • Christiansen, O., Koch, H., Jørgensen, P., The second order approximate coupled cluster singles and doubles model CC2 (1995) Chem Phys Lett, 243, pp. 409-418
  • Christiansen, O., Koch, H., Jørgensen, P., Response functions in the CC3 iterative triple excitation model (1995) J Chem Phys, 103, pp. 7429-7441
  • Christiansen, O., Koch, H., Jørgensen, P., Perturbative triple excitation corrections to coupled cluster singles and doubles excitation energies (1996) J Chem Phys, 105, pp. 1451-1459
  • Klopper, W., Samson, C.C.M., Explicitly correlated second-order Møller-Plesset methods with auxiliary basis sets (2002) J Chem Phys, 116, pp. 6397-6410
  • Samson, C.C.M., Klopper, W., Helgaker, T., Computation of two-electron Gaussian integrals for wave functions including the correlation factor r 12 exp(-γ r 2 12 ) (2002) Comp Phys Commun, 149, pp. 1-10
  • Tew, D.P., Klopper, W., Neiss, C., Hättig, C., Quintuple-zeta quality coupled-cluster correlation energies with triple-zeta basis sets (2007) Phys Chem Chem Phys, 9, pp. 1921-1930
  • Cacheiro, J.L., Pedersen, T.B., Fernández, B., Sánchez de Merás, A., Koch, H., The CCSD(T) model with Cholesky decomposition of orbital energy denominators (2011) Int J Quantum Chem, 111, pp. 349-355
  • Pedersen, T.B., Sánchez de Merás, A.M.J., Koch, H., Polarizability and optical rotation calculated from the approximate coupled cluster singles and doubles CC2 linear response theory using Cholesky decompositions (2004) J Chem Phys, 120, pp. 8887-8897
  • Sánchez de Merás, A.M.J., Koch, H., Cuesta, I.G., Boman, L., Cholesky decomposition-based definition of atomic subsystems in electronic structure calculations (2010) J Chem Phys, 132, p. 204105
  • Norman, P., Schimmelpfennig, B., Ruud, K., Jensen, H.J.A., Ågren, H., Relativistic effects on linear and nonlinear polarizabilities studied by effective-core potential, Douglas-Kroll, and Dirac-Hartree-Fock response theory (2002) J Chem Phys, 116, pp. 6914-6923
  • Coriani, S., Helgaker, T., Jørgensen, P., Klopper, W., A closed-shell coupled-cluster treatment of the Breit-Pauli first-order relativistic energy correction (2004) J Chem Phys, 121, pp. 6591-6598
  • Vahtras, O., Ågren, H., Jørgensen, P., Jensen, H.J.A., Helgaker, T., Olsen, J., Spin-orbit coupling constants in a multiconfiguration linear response approach (1992) J Chem Phys, 96, pp. 2118-2126
  • Vahtras, O., Ågren, H., Jørgensen, P., Jensen, H.J.A., Helgaker, T., Olsen, J., Multiconfigurational quadratic response functions for singlet and triplet perturbations: the phosphorescence lifetime of formaldehyde (1992) J Chem Phys, 97, pp. 9178-9187
  • Ruud, K., Schimmelpfennig, B., Ågren, H., Internal and external heavy-atom effects on phosphorescence radiative lifetimes calculated using a mean-field spin-orbit Hamiltonian (1999) Chem Phys Lett, 310, pp. 215-221
  • Hennum, A.C., Helgaker, T., Klopper, W., Parity-violating interaction in H 2 O 2 calculated from density-functional theory (2002) Chem Phys Lett, 354, pp. 274-282
  • Helgaker, T.U., Almlöf, J., Jensen, H.J.A., Jørgensen, P., Molecular Hessians for large-scale MCSCF wave functions (1986) J Chem Phys, 84, pp. 6266-6279
  • Reine, S., Krapp, A., Iozzi, M.F., Bakken, V., Helgaker, T., Pawłowski, F., Sałek, P., An efficient density-functional-theory force evaluation for large molecular systems (2010) J Chem Phys, 133, p. 044102
  • Hald, K., Halkier, A., Jørgensen, P., Coriani, S., Hättig, C., Helgaker, T., A Lagrangian, integral-density direct formulation and implementation of the analytic CCSD and CCSD(T) gradients (2003) J Chem Phys, 118, pp. 2985-2998
  • Ruden, T.A., Taylor, P.R., Helgaker, T., Automated calculation of fundamental frequencies: application to AlH 3 using the coupled-cluster singles-and-doubles with perturbative triples method (2003) J Chem Phys, 119, pp. 1951-1960
  • Bakken, V., Helgaker, T., The efficient optimization of molecular geometries using redundant internal coordinates (2002) J Chem Phys, 117, pp. 9160-9174
  • Jensen, H.J.A., Jørgensen, P., Helgaker, T., Systematic determination of MCSCF equilibrium and transition structures and reaction paths (1986) J Chem Phys, 85, pp. 3917-3929
  • Helgaker, T., Transition-state optimizations by trust-region image minimization (1991) Chem Phys Lett, 182, pp. 503-510
  • Cesar, A., Ågren, H., Helgaker, T., Jørgensen, P., Jensen, H.J.A., Excited state structures and vibronic spectra of H 2 CO + , HDCO + and D 2 CO + using molecular gradient and Hessian techniques (1991) J Chem Phys, 95, pp. 5906-5917
  • Coriani, S., Kjærgaard, T., Jørgensen, P., Ruud, K., Huh, J., Berger, R., An atomic-orbital-based Lagrangian approach for calculating geometric gradients of linear response properties (2010) J Chem Theory Comp, 6, pp. 1020-1047
  • Norman, P., Ågren, H., Geometry optimization of core electron excited molecules (1997) J Mol Struct: THEOCHEM, 401, pp. 107-115
  • Helgaker, T., Uggerud, E., Jensen, H.J.A., Integration of the classical equations of motion on ab initio molecular potential energy surfaces using gradients and Hessians: application to translational energy release upon fragmentation (1990) Chem Phys Lett, 173, pp. 145-150
  • Rybkin, V.V., Simakov, A.O., Bakken, V., Reine, S.S., Kjærgaard, T., Helgaker, T., Uggerud, E., Insights into the dynamics of evaporation and proton migration in protonated water clusters from large-scale Born-Oppenheimer direct dynamics (2013) J Comput Chem, 34, pp. 533-544
  • Helgaker, T.U., Jensen, H.J.A., Jørgensen, P., Analytical calculation of MCSCF dipole-moment derivatives (1986) J Chem Phys, 84, pp. 6280-6284
  • Åstrand, P.-O., Ruud, K., Taylor, P.R., Calculation of the vibrational wave function of polyatomic molecules (2000) J Chem Phys, 112, pp. 2655-2667
  • Ruud, K., Åstrand, P.-O., Taylor, P.R., An efficient approach for calculating vibrational wave functions and zero-point vibrational corrections to molecular properties of polyatomic molecules (2000) J Chem Phys, 112, pp. 2668-2683
  • Helgaker, T., Wilson, P.J., Amos, R.D., Handy, N.C., Nuclear shielding constants by density functional theory with gauge including atomic orbitals (2000) J Chem Phys, 113, pp. 2983-2989
  • Helgaker, T., Watson, M., Handy, N.C., Analytical calculation of nuclear magnetic resonance indirect spin-spin coupling constants at the generalized gradient approximation and hybrid levels of density-functional theory (2000) J Chem Phys, 113, pp. 9402-9409
  • Watson, M.A., Sałek, P., Macak, P., Jaszuński, M., Helgaker, T., The calculation of indirect nuclear spin-spin coupling constants in large molecules (2004) Chem Eur J, 10, pp. 4627-4639
  • Vahtras, O., Ågren, H., Jørgensen, P., Jensen, H.J.A., Padkjær, S.B., Helgaker, T., Indirect nuclear spin-spin coupling constants from multiconfiguration linear response theory (1992) J Chem Phys, 96, pp. 6120-6125
  • Ruud, K., Helgaker, T., Kobayashi, R., Jørgensen, P., Bak, K.L., Jensen, H.J.A., Multiconfigurational self-consistent field calculations of nuclear shieldings using London atomic orbitals (1994) J Chem Phys, 100, pp. 8178-8185
  • Enevoldsen, T., Oddershede, J., Sauer, S.P.A., Correlated calculations of indirect nuclear spin-spin coupling constants using second order polarization propagator approximations: SOPPA and SOPPA(CCSD) (1998) Theor Chem Acc, 100, pp. 275-284
  • Fernández, B., Jørgensen, P., Byberg, J., Olsen, J., Helgaker, T., Jensen, H.J.A., Spin polarization in restricted electronic structure theory: multiconfiguration self-consistent-field calculations of hyperfine coupling constants (1992) J Chem Phys, 97, pp. 3412-3419
  • Rinkevicius, Z., Telyatnyk, L., Vahtras, O., Ågren, H., Density functional theory for hyperfine coupling constants with the restricted-unrestricted approach (2004) J Chem Phys, 121, pp. 7614-7623
  • Vahtras, O., Minaev, B., Ågren, H., Ab initio calculations of electronic g-factors by means of multiconfiguration response theory (1998) Chem Phys Lett, 281, pp. 186-192
  • Vahtras, O., Loboda, O., Minaev, B., Ågren, H., Ruud, K., Ab initio calculations of zero-field splitting parameters (2002) Chem Phys, 279, pp. 133-142
  • Gauss, J., Ruud, K., Helgaker, T., Perturbation-dependent atomic orbitals for the calculation of spin-rotation constants and rotational g tensors (1996) J Chem Phys, 105, pp. 2804-2812
  • Ruud, K., Helgaker, T., Bak, K.L., Jørgensen, P., Jensen, H.J.A., Hartree-Fock limit magnetizabilities from London orbitals (1993) J Chem Phys, 99, pp. 3847-3859
  • Bak, K.L., Sauer, S.P.A., Oddershede, J., Ogilvie, J.F., The vibrational g factor of dihydrogen from theoretical calculation and analysis of vibration-rotational spectra (2005) Phys Chem Chem Phys, 7, pp. 1747-1758
  • Bak, K.L., Jørgensen, P., Helgaker, T., Ruud, K., Jensen, H.J.A., Gauge-origin independent multiconfigurational self-consistent-field theory for vibrational circular dichroism (1993) J Chem Phys, 98, pp. 8873-8887
  • Bak, K.L., Hansen, A., Ruud, R., Helgaker, T., Olsen, J., Jørgensen, P., Ab-initio calculation of electronic circular dichroism for trans-cyclooctene using London atomic orbitals (1995) Theor Chim Acta, 90, pp. 441-458
  • Ruud, K., Helgaker, T., Optical rotation studied by density-functional and coupled-cluster methods (2002) Chem Phys Lett, 352, pp. 533-539
  • Helgaker, T., Ruud, K., Bak, K.L., Jørgensen, P., Olsen, J., Vibrational Raman optical activity calculations using London atomic orbitals (1994) Faraday Discuss, 99, pp. 165-180
  • Ligabue, A., Sauer, S.P.A., Lazzeretti, P., Correlated and gauge invariant calculations of nuclear magnetic shielding constants using the continuous transformation of the origin of the current density approach (2003) J Chem Phys, 118, pp. 6830-6845
  • Sałek, P., Vahtras, O., Helgaker, T., Ågren, H., Density-functional theory of linear and nonlinear time-dependent molecular properties (2002) J Chem Phys, 117, pp. 9630-9645
  • Packer, M.J., Dalskov, E.K., Enevoldsen, T., Jensen, H.J.A., Oddershede, J., A new implementation of the second-order polarization propagator approximation (SOPPA): the excitation spectra of benzene and naphthalene (1996) J Chem Phys, 105, pp. 5886-5900
  • Helgaker, T., Coriani, S., Jørgensen, P., Kristensen, K., Olsen, J., Ruud, K., Recent advances in wave function-based methods of molecular-property calculations (2012) Chem Rev, 112, pp. 543-631
  • Hettema, H., Jensen, H.J.A., Jørgensen, P., Olsen, J., Quadratic response functions for a multiconfigurational self-consistent field wave-function (1992) J Chem Phys, 97, pp. 1174-1190
  • Luo, Y., Vahtras, O., Ågren, H., Jørgensen, P., Multiconfigurational quadratic response theory calculations of two-photon electronic transition probabilities of H 2 O (1993) Chem Phys Lett, 204, pp. 587-594
  • Sałek, P., Vahtras, O., Guo, J., Luo, Y., Helgaker, T., Ågren, H., Calculations of two-photon absorption cross sections by means of density-functional theory (2003) Chem Phys Lett, 374, pp. 446-452
  • Jansík, B., Rizzo, A., Ågren, H., Response theory calculations of two-photon circular dichroism (2005) Chem Phys Lett, 414, pp. 461-467
  • Tunell, I., Rinkevicius, Z., Vahtras, O., Sałek, P., Helgaker, T., Ågren, H., Density functional theory of nonlinear triplet response properties with applications to phosphorescence (2003) J Chem Phys, 119, pp. 11024-11034
  • Norman, P., Jonsson, D., Vahtras, O., Ågren, H., Non-linear electric and magnetic properties obtained from cubic response functions in the random phase approximation (1996) Chem Phys, 203, pp. 23-42
  • Jonsson, D., Norman, P., Ågren, H., Cubic response functions in the multiconfiguration self-consistent field approximation (1996) J Chem Phys, 105, pp. 6401-6419
  • Jansík, B., Sałek, P., Jonsson, D., Vahtras, O., Ågren, H., Cubic response functions in time-dependent density functional theory (2005) J Chem Phys, 122, p. 054107
  • Cronstrand, P., Jansík, B., Jonsson, D., Luo, Y., Ågren, H., Density functional theory calculations of three-photon absorption (2004) J Chem Phys, 121, pp. 9239-9246
  • Jonsson, D., Norman, P., Luo, Y., Ågren, H., Response theory for static and dynamic polarizabilities of excited states (1996) J Chem Phys, 105, pp. 581-587
  • Rizzo, A., Ågren, H., Ab initio study of circular intensity difference in electric-field second harmonic generation of chiral natural amino acids (2013) Phys Chem Chem Phys, 15, pp. 1198-1207
  • Halkier, A., Koch, H., Christiansen, O., Jørgensen, P., Helgaker, T., First-order one-electron properties in the integral-direct coupled cluster singles and doubles model (1997) J Chem Phys, 107, pp. 849-866
  • Christiansen, O., Koch, H., Halkier, A., Jørgensen, P., Helgaker, T., Sánchez de Merás, A., Large-scale calculations of excitation energies in coupled cluster theory: the singlet excited states of benzene (1996) J Chem Phys, 105, pp. 6921-6939
  • Christiansen, O., Halkier, A., Koch, H., Jørgensen, P., Helgaker, T., Integral-direct coupled cluster calculations of frequency-dependent polarizabilities, transition probabilities and excited-state properties (1998) J Chem Phys, 108, pp. 2801-2816
  • Hättig, C., Christiansen, O., Koch, H., Jørgensen, P., Frequency-dependent first hyperpolarizabilities using coupled cluster quadratic response theory (1997) Chem Phys Lett, 269, pp. 428-434
  • Hättig, C., Christiansen, O., Jørgensen, P., Frequency-dependent second hyperpolarizabilities using coupled cluster cubic response theory (1998) Chem Phys Lett, 282, pp. 139-146
  • Hättig, C., Christiansen, O., Jørgensen, P., Coupled cluster response calculations of two-photon transition probability rate constants for helium, neon and argon (1998) J Chem Phys, 108, pp. 8355-8359
  • Hald, K., Jørgensen, P., Christiansen, O., Koch, H., Implementation of singlet and triplet excitation energies in coupled cluster theory with approximate triples corrections (2002) J Chem Phys, 116, pp. 5963-5970
  • Hättig, C., Christiansen, O., Coriani, S., Jørgensen, P., Static and frequency-dependent polarizabilities of excited singlet states using coupled cluster response theory (1994) J Chem Phys, 109, pp. 9237-9243
  • Ågren, H., Carravetta, V., Vahtras, O., Pettersson, L.G.M., Direct, atomic orbital, static exchange calculations of photoabsorption spectra of large molecules and clusters (1994) Chem Phys Lett, 222, pp. 75-81
  • Ågren, H., Jensen, H.J.A., An efficient method for calculation of generalized overlap amplitudes for core photoelectron shake-up spectra (1987) Chem Phys Lett, 137, pp. 431-436
  • Luo, Y., Vahtras, O., Gel'mukhanov, F., Ågren, H., Theory of natural circular dichroism in X-ray Raman scattering from molecules (1997) Phys Rev A, 55, pp. 2716-2722
  • Vahtras, O., Ågren, H., Carravetta, V., Natural circular dichroism in non-resonant X-ray emission (1997) J Phys B, 30, pp. 1493-1501
  • Norman, P., Bishop, D.M., Jensen, H.J.A., Oddershede, J., Nonlinear response theory with relaxation: the first-order hyperpolarizability (2005) J Chem Phys, 123, p. 194103
  • Norman, P., Bishop, D.M., Jensen, H.J.A., Oddershede, J., Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations (2001) J Chem Phys, 115, pp. 10323-10334
  • Coriani, S., Christiansen, O., Fransson, T., Norman, P., Coupled-cluster response theory for near-edge X-ray-absorption fine structure of atoms and molecules (2012) Phys Rev A, 85, p. 022507
  • Coriani, S., Fransson, T., Christiansen, O., Norman, P., Asymmetric-Lanczos-chain-driven implementation of electronic resonance convergent coupled cluster linear response theory (2012) J Chem Theory Comput, 8, pp. 1616-1628
  • Kauczor, J., Jørgensen, P., Norman, P., On the efficiency of algorithms for solving Hartree-Fock and Kohn-Sham response equations (2011) J Chem Theory Comput, 7, pp. 1610-1630
  • Jiemchooroj, A., Norman, P., Electronic circular dichroism spectra from the complex polarization propagator (2007) J Chem Phys, 126, p. 134102
  • Mohammed, A., Ågren, H., Norman, P., Resonance enhanced Raman scattering from the complex electric-dipole polarizability: a theoretical study on N 2 (2009) Chem Phys Lett, 468, pp. 119-123
  • Solheim, H., Ruud, K., Coriani, S., Norman, P., Complex polarization propagator calculations of magnetic circular dichroism spectra (2008) J Chem Phys, 128, p. 094103
  • Ekström, U., Norman, P., Carravetta, V., Ågren, H., Polarization propagator for X-ray spectra (2006) Phys Rev Lett, 97, p. 143001
  • Ahrén, M., Selegård, L., Söderlind, F., Linares, M., Kauczor, J., Norman, P., Käll, P.-O., Uvdal, K., A simple polyol-free synthesis route to Gd 2 O 3 nanoparticles for MRI applications: an experimental and theoretical study (2012) J Nanopart Res, 14, p. 1006
  • Mikkelsen, K.V., Ågren, H., Jensen, H.J.A., Helgaker, T., A multiconfigurational self-consistent reaction-field method (1988) J Chem Phys, 89, pp. 3086-3095
  • Mikkelsen, K.V., Cesar, A., Ågren, H., Jensen, H.J.A., Multiconfigurational self-consistent reaction-field theory for nonequilibrium solvation (1995) J Chem Phys, 103, pp. 9010-9023
  • Christiansen, O., Mikkelsen, K.V., A coupled-cluster solvent reaction field method (1999) J Chem Phys, 110, pp. 1365-1375
  • Mikkelsen, K.V., Jørgensen, P., Jensen, H.J.A., A multiconfiguration self consistent reaction field response method (1994) J Chem Phys, 100, pp. 6597-6607
  • Mikkelsen, K.V., Sylvester-Hvid, K.O., A molecular response method for solvated molecules in nonequlibrium solvation (1996) J Phys Chem, 100, pp. 9116-9126
  • Fernández, B., Christensen, O., Bludsky, O., Jørgensen, P., Mikkelsen, K.V., Theory of hyperfine coupling constants of solvated molecules: applications involving methyl and ClO 2 radicals in different solvents (1996) J Chem Phys, 104, pp. 629-635
  • Mikkelsen, K.V., Jørgensen, P., Ruud, K., Helgaker, T., A multipole reaction-field model for gauge-origin independent magnetic properties of solvated molecules (1997) J Chem Phys, 106, pp. 1170-1180
  • Sylvester-Hvid, K.O., Mikkelsen, K.V., Jonsson, D., Norman, P., Ågren, H., Nonlinear optical response of molecules in a nonequilibrium solvation model (1998) J Chem Phys, 109, pp. 5576-5584
  • Christiansen, O., Mikkelsen, K.V., Coupled cluster response theory for solvated molecules in equilibrium and nonequilibrium solvation (1999) J Chem Phys, 110, pp. 8348-8360
  • Cammi, R., Frediani, L., Mennucci, B., Tomasi, J., Ruud, K., Mikkelsen, K.V., A second-order, quadratically convergent multiconfigurational self-consistent field polarizable continuum model for equilibrium and nonequilibrium solvation (2002) J Chem Phys, 117, pp. 13-26
  • Cammi, R., Frediani, L., Mennucci, B., Ruud, K., Multiconfigurational self-consistent field linear response for the polarizable continuum model: theory and application to ground and excited-state polarizabilities of para-nitroaniline in solution (2003) J Chem Phys, 119, pp. 5818-5827
  • Frediani, L., Ågren, H., Ferrighi, L., Ruud, K., Second-harmonic generation of solvated molecules using multiconfigurational self-consistent-field quadratic response theory and the polarizable continuum model (2005) J Chem Phys, 123, p. 144117
  • Ferrighi, L., Frediani, L., Ruud, K., Degenerate four-wave mixing in solution by cubic response theory and the polarizable continuum model (2007) J Phys Chem B, 111, pp. 8965-8973
  • Kongsted, J., Osted, A., Mikkelsen, K.V., Christiansen, O., The QM/MM approach for wavefunctions, energies and response functions within self-consistent field and coupled cluster theories (2002) Mol Phys, 100, pp. 1813-1828
  • Osted, A., Kongsted, J., Mikkelsen, K.V., Christiansen, O., A CC2 dielectric continuum model and a CC2 molecular mechanics model (2003) Mol Phys, 101, pp. 2055-2071
  • Kongsted, J., Osted, A., Mikkelsen, K.V., Christiansen, O., Linear response functions for coupled cluster/molecular mechanics including polarization interactions (2003) J Chem Phys, 118, pp. 1620-1633
  • Olsen, J.M., Aidas, K., Kongsted, J., Excited states in solution through polarizable embedding (2010) J Chem Theory Comput, 6, pp. 3721-3734
  • Olsen, J.M.H., Kongsted, J., Molecular properties through polarizable embedding (2011) Adv Quantum Chem, 61, pp. 107-143
  • Eriksen, J.J., Sauer, S.P.A., Mikkelsen, K.V., Jensen, H.J.A., Kongsted, J., On the importance of excited state dynamic response electron correlation in polarizable embedding methods (2012) J Comput Chem, 33, pp. 2012-2022
  • Sneskov, K., Schwabe, T., Kongsted, J., Christiansen, O., The polarizable embedding coupled cluster method (2012) J Chem Phys, 134, pp. 104108-104123
  • Sałek, P., Høst, S., Thøgersen, L., Jørgensen, P., Manninen, P., Olsen, J., Jansík, B., Coriani, S., Linear-scaling implementation of molecular electronic self-consistent field theory (2007) J Chem Phys, 126, p. 114110
  • Høst, S., Olsen, J., Jansík, B., Thøgersen, L., Jørgensen, P., Helgaker, T., The augmented Roothaan-Hall method for optimizing Hartree-Fock and Kohn-Sham density matrices (2008) J Chem Phys, 129, p. 124106
  • Jansík, B., Høst, S., Johansson, M.P., Olsen, J., Jørgensen, P., Helgaker, T., A stepwise atomic, valence-molecular, and full-molecular optimisation of the Hartree-Fock/Kohn-Sham energy (2009) Phys Chem Chem Phys, 11, pp. 5805-5813
  • White, C.A., Johnson, B.G., Gill, P.M.W., Head-Gordon, M., The continuous fast multipole method (1994) Chem Phys Lett, 230, pp. 8-16
  • Watson, M.A., Sałek, P., Macak, P., Helgaker, T., Linear-scaling formation of Kohn-Sham Hamiltonian: application to the calculation of excitation energies and polarizabilities of large molecular systems (2004) J Chem Phys, 121, pp. 2915-2931
  • Ochsenfeld, C., White, C.A., Head-Gordon, M., Linear and sublinear scaling formation of Hartree-Fock-type exchange matrices (1998) J Chem Phys, 109, pp. 1663-1669
  • Reine, S., Tellgren, E., Krapp, A., Kjærgaard, T., Helgaker, T., Jansík, B., Høst, S., Sałek, P., Variational and robust density fitting of four-center two-electron integrals in local metrics (2008) J Chem Phys, 129, p. 104101
  • Coriani, S., Høst, S., Jansík, B., Thøgersen, L., Olsen, J., Jørgensen, P., Reine, S., Sałek, P., Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory (2007) J Chem Phys, 126, p. 154108
  • Thorvaldsen, A.J., Ruud, K., Kristensen, K., Jørgensen, P., Coriani, S., A density matrix-based quasi-energy formulation of the Kohn-Sham density functional response theory using perturbation- and time-dependent basis sets (2008) J Chem Phys, 129, p. 214108
  • Kjærgaard, T., Jørgensen, P., Thorvaldsen, A.J., Salek, P., Coriani, S., Gauge-origin independent formulation and implementation of magneto-optical activity within atomic-orbital-density based Hartree-Fock and Kohn-Sham response theories (2009) J Chem Theory Comp, 5, pp. 1997-2020
  • Kjærgaard, T., Kristensen, K., Kauczor, J., Jørgensen, P., Coriani, S., Thorvaldsen, A.J., Comparison of standard and damped response formulations of magnetic circular dichroism (2011) J Chem Phys, 135, p. 024112
  • Kristensen, K., Kauczor, J., Kjærgaard, T., Jørgensen, P., Quasi-energy formulation of damped response theory (2009) J Chem Phys, 131, p. 044112
  • Jansík, B., Høst, S., Kristensen, K., Jørgensen, P., Local orbitals by minimizing powers of the orbital variance (2011) J Chem Phys, 134, p. 194104
  • Høyvik, I.-M., Jansík, B., Jørgensen, P., Trust region minimization of orbital localization functions (2012) J Chem Theory Comput, 8, pp. 3137-3146
  • Ziólkowski, M., Jansík, B., Kjærgaard, T., Jørgensen, P., Linear scaling coupled-cluster method with correlation energy based error control (2010) J Chem Phys, 133, p. 014107
  • Kristensen, K., Jørgensen, P., Jansík, B., Kjærgaard, T., Reine, S., Molecular gradient for second-order Møller-Plesset perturbation theory using the Divide-Expand-Consolidate (DEC) scheme (2012) J Chem Phys, 137, p. 114102
  • Kristensen, K., Høyvik, I.-M., Jansík, B., Jørgensen, P., Kjærgaard, T., Reine, S., Jakowski, J., MP2 energy and density for large molecular systems with internal error control using the Divide-Expand-Consolidate scheme (2012) Phys Chem Chem Phys, 14, pp. 15706-15714
  • Helgaker, T., Taylor, P.R., (1986) HERMIT, A Molecular Integral Code, , University of Oslo, Oslo, Norway
  • Helgaker, T., Jensen, H.J.A., Jørgensen, P., Olsen, J., Taylor, P.R., (1986) ABACUS, A Molecular Property Code, , University of Oslo, Oslo, Norway
  • Jørgensen, P., Jensen, H.J.A., Olsen, J., (1988) RESPONS, A Molecular Response Code, , Aarhus University, Aarhus, Denmark
  • Koch, H., Sánchez de Merás, A., Pedersen, T.B., Reduced scaling in electronic structure calculations using Cholesky decompositions (2003) J Chem Phys, 118, pp. 9481-9484
  • Peach, M.J.G., Helgaker, T., Salek, P., Keal, T.W., Lutnæs, O.B., Tozer, D.J., Handy, N.C., Assessment of a Coulomb-attenuated exchange-correlation energy functional (2006) Phys Chem Chem Phys, 8, pp. 558-562
  • Peach, M.J.G., Benfield, P., Helgaker, T., Tozer, D.J., Excitation energies in density functional theory: an evaluation and a diagnostic test (2008) J Chem Phys, 128, p. 044118
  • Bak, K.L., Koch, H., Oddershede, J., Christiansen, O., Sauer, S.P.A., Atomic integral driven second order polarization propagator calculations of the excitation spectra of naphthalene and anthracene (2000) J Chem Phys, 112, pp. 4173-4185
  • Christiansen, O., Bak, K.L., Koch, H., Sauer, S.P.A., A second-order doubles correction to excitation energies in the random phase approximation (1998) Chem Phys Lett, 284, pp. 47-55
  • Vahtras, O., Rinkevicius, Z., General excitations in time-dependent density functional theory (2007) J Chem Phys, 126, p. 114101
  • Rinkevicius, Z., Vahtras, O., Ågren, H., Spin-flip time dependent density-functional theory applied to excited states with single, double, or mixed electron excitation character (2010) J Chem Phys, 133, p. 114104
  • Norman, P., Jonsson, D., Ågren, H., Dahle, P., Ruud, K., Helgaker, T., Koch, H., Efficient parallel implementation of response theory: calculations of the second hyperpolarizability of polyacenes (1996) Chem Phys Lett, 253, pp. 1-7
  • Steindal, A.H., Olsen, J.M.H., Frediani, L., Kongsted, J., Ruud, K., Parallelization of the polarizable embedding scheme for higher-order response functions (2012) Mol Phys, 110, pp. 2579-2586
  • Fossgård, E., Ruud, K., Superlinear scaling in master-slave quantum chemical calculations using in-core storage of two-electron integrals (2006) J Comput Chem, 27, pp. 326-333

Citas:

---------- APA ----------
Aidas, K., Angeli, C., Bak, K.L., Bakken, V., Bast, R., Boman, L., Christiansen, O.,..., Ågren, H. (2014) . The Dalton quantum chemistry program system. Wiley Interdisciplinary Reviews: Computational Molecular Science, 4(3), 269-284.
http://dx.doi.org/10.1002/wcms.1172
---------- CHICAGO ----------
Aidas, K., Angeli, C., Bak, K.L., Bakken, V., Bast, R., Boman, L., et al. "The Dalton quantum chemistry program system" . Wiley Interdisciplinary Reviews: Computational Molecular Science 4, no. 3 (2014) : 269-284.
http://dx.doi.org/10.1002/wcms.1172
---------- MLA ----------
Aidas, K., Angeli, C., Bak, K.L., Bakken, V., Bast, R., Boman, L., et al. "The Dalton quantum chemistry program system" . Wiley Interdisciplinary Reviews: Computational Molecular Science, vol. 4, no. 3, 2014, pp. 269-284.
http://dx.doi.org/10.1002/wcms.1172
---------- VANCOUVER ----------
Aidas, K., Angeli, C., Bak, K.L., Bakken, V., Bast, R., Boman, L., et al. The Dalton quantum chemistry program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014;4(3):269-284.
http://dx.doi.org/10.1002/wcms.1172