Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

CoDNaS (conformational diversity of the native state) is a protein conformational diversity database. Conformational diversity describes structural differences between conformers that define the native state of proteins. It is a key concept to understand protein function and biological processes related to protein functions. CoDNaS offers a well curated database that is experimentally driven, thoroughly linked, and annotated. CoDNaS facilitates the extraction of key information on small structural differences based on protein movements. CoDNaS enables users to easily relate the degree of conformational diversity with physical, chemical and biological properties derived from experiments on protein structure and biological characteristics. The new version of CoDNaS includes 70% of all available protein structures, and new tools have been added that run sequence searches, display structural flexibility profiles and allow users to browse the database for different structural classes. These tools facilitate the exploration of protein conformational diversity and its role in protein function. © The Author(s) 2016. Published by Oxford University Press.

Registro:

Documento: Artículo
Título:CoDNaS 2.0: A comprehensive database of protein conformational diversity in the native state
Autor:Monzon, A.M.; Rohr, C.O.; Fornasari, M.S.; Parisi, G.
Filiación:Departamento de Ciencia Y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
Nstituto de Ecología Gené Tica Y Evolución de Buenos Aires (IEGEBA)-Laboratorio de Genómica Médica Y Evolución, Universidad Nacional de Buenos Aires, Argentina
Palabras clave:protein; chemistry; protein conformation; protein database; search engine; Databases, Protein; Protein Conformation; Proteins; Search Engine
Año:2016
Volumen:2016
DOI: http://dx.doi.org/10.1093/database/baw038
Título revista:Database
Título revista abreviado:Database
ISSN:17580463
CAS:protein, 67254-75-5; Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17580463_v2016_n_p_Monzon

Referencias:

  • James, L.C., Tawfik, D.S., Conformational diversity and protein evolution-A 60-year-old hypothesis revisited (2003) Trends. Biochem. Sci, 28, pp. 361-368
  • Gerstein, M., Krebs, W., A database of macromolecular motions (1998) Nucleic Acids Res, 26, pp. 4280-4290
  • Gerstein, M., Lesk, A.M., Chothia, C., Structural mechanisms for domain movements in proteins (1994) Biochemistry, 33, pp. 6739-6749
  • Gu, Y., Li, D.W., Brü Schweiler, R., Decoding the Mobility and Time Scales of protein loops (2015) J. Chem. Theory Comput, 11, pp. 1308-1314
  • Gora, A., Brezovsky, J., Damborsky, J., Gates of enzymes (2013) Chem. Rev, 113, pp. 5871-5923
  • Koshland, D.E., Conformational changes: How small is big enough? (1998) Nat. Med, 4, pp. 1112-1114
  • Henzler-Wildman, K., Thai, V., Lei, M., Intrinsic motions along an enzymatic reaction trajectory (2007) Nature, 450, pp. 838-844
  • Nussinov, R., Ma, B., Protein dynamics and conformational selection in bidirectional signal transduction (2012) BMC Biol, 10, p. 2
  • Yogurtcu, O.N., Erdemli, S.B., Nussinov, R., Restricted mobility of conserved residues in protein-protein interfaces in molecular simulations (2008) Biophys. J, 94, pp. 3475-3485
  • Khersonsky, O., Roodveldt, C., Tawfik, D.S., Enzyme promiscuity: Evolutionary and mechanistic aspects (2006) Curr. Opin. Chem. Biol, 10, pp. 498-508
  • Gunasekaran, K., Ma, B., Nussinov, R., Is allostery an intrinsic property of all dynamic proteins? (2004) Proteins, 57, pp. 433-443
  • Changeux, J.P., Allostery and the Monod-Wyman- Changeux model after 50 years (2012) Annu. Rev. Biophys, 41, pp. 103-133
  • Bai, F., Branch, R.W., Nicolau, D.V., Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch (2010) Science, 327, pp. 685-689
  • Tokuriki, N., Tawfik, D.S., Protein dynamism and evolvability (2009) Science, 324, pp. 203-207
  • Javier Zea, D., Monzon, A.M., Fornasari, M.S., Protein conformational diversity correlates with evolutionary rate (2013) Mol. Biol. Evol, 30, pp. 1500-1503
  • Parisi, G., Zea, D.J., Monzon, A.M., Conformational diversity and the emergence of sequence signatures during evolution (2015) Curr. Opin. Struct. Biol, 32, pp. 58-65
  • Juritz, E., Fornasari, M.S., Martelli, P.L., On the effect of protein conformation diversity in discriminating among neutral and disease related single amino acid substitutions (2012) BMC Genomics, 13, p. S5
  • Kuzu, G., Gursoy, A., Nussinov, R., Exploiting conformational ensembles in modeling protein-protein interactions on the proteome scale (2013) J. Proteome Res, 12, pp. 2641-2653
  • Osguthorpe, D.J., Sherman, W., Hagler, A.T., Generation of receptor structural ensembles for virtual screeningusing binding site shape analysis and clustering (2012) Chem. Biol. Drug des, 80, pp. 182-193
  • Palopoli, N., Lanzarotti, E., Parisi, G., BeEP Server: Using evolutionary information for quality assessment of protein structure models (2013) Nucleic Acids Res, 41, pp. 398-405. , Web Server issue
  • Juritz, E., Palopoli, N., Fornasari, S., Protein conformational diversity modulates sequence divergence (2013) Mol. Biol. Evol, 30, pp. 79-87
  • Monzon, A.M., Juritz, E., Fornasari, M.S., CoDNaS: A database of conformational diversity in the native state of proteins (2013) Bioinformatics, 29, pp. 2512-2514
  • Perutz, M.F., Bolton, W., Diamond, R., Structure of haemoglobin. An x-ray examination of reduced horse haemoglobin (1964) Nature, 203, pp. 687-690
  • Best, R.B., Lindorff-Larsen, K., DePristo, M.A., Relation between native ensembles and experimental structures of proteins (2006) Proc. Natl. Acad. Sci. U. S. a, 103, pp. 10901-10906
  • Burra, P.V., Zhang, Y., Godzik, A., Global distribution of conformational states derived from redundant models in the PDB points to non-uniqueness of the protein structure (2009) Proc. Natl. Acad. Sci. U. S.A, 106, pp. 10505-10510
  • Berman, H.M., Westbrook, J., Feng, Z., The protein data bank (2000) Nucleic Acids Res, pp. 235-242
  • Altschul, S.F., Gish, W., Miller, W., Basic local alignment search tool (1990) J. Mol. Biol, 215, pp. 403-410
  • Ortiz, A.R., Strauss, C.E.M., Olmea, O., MAMMOTH (matching molecular models obtained from theory): An automated method for model comparison (2002) Protein Sci, 11, pp. 2606-2621
  • Xu, J., Zhang, Y., How significant is a protein structure similarity with TM-score 0.5? (2010) Bioinformatics, 26, pp. 889-895
  • Zhang, Y., Skolnick, J., Scoring function for automated assessment of protein structure template quality (2004) Proteins, 57, pp. 702-710
  • McLachlan, A.D., Rapid comparison of protein structures (1982) Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, pp. 871-873. , http://scripts.iucr.org/cgi-bin/paper?S0567739482001806, International Union of Crystallography,(October 5 2012, date last accessed
  • Smith, D.K., Radivojac, P., Obradovic, Z., Improved amino acid flexibility parameters (2003) Protein Sci, 12, pp. 1060-1072
  • Yang, J., Roy, A., Zhang, Y., BioLiP: A semi-manually curated database for biologically relevant ligand-protein interactions (2013) Nucleic Acids Res, 41, pp. 1096-1103
  • Krissinel, E., Henrick, K., Inference of macromolecular assemblies from crystalline state (2007) J. Mol. Biol, 372, pp. 774-797
  • Potenza, E., Domenico, T.D., Walsh, I., MobiDB 2.0: An improved database of intrinsically disordered and mobile proteins (2014) Nucleic Acids Res, 43, pp. D315-D320
  • Velankar, S., Dana, J.M., Jacobsen, J., SIFTS: Structure integration with function, taxonomy and sequences resource (2013) Nucleic Acids Res, 41, pp. D483-D489. , Database issue
  • UniProt: A hub for protein information (2014) Nucleic Acids Res, 43, pp. D204-D212. , The UniProt Consortium
  • Orengo, C.A., Bray, J.E., Buchan, D.W., The CATH protein family database: A resource for structural and functional annotation of genomes (2002) Proteomics, 2, pp. 11-21
  • Bairoch, A., The ENZYME database in 2000 (2000) Nucleic Acids Res, 28, pp. 304-305
  • Ashburner, M., Ball, C.A., Blake, J.A., Gene ontology: Tool for the unification of biology (2000) The Gene Ontology Consortium, 25, pp. 25-29. , Nat. Genet
  • Reeves, G.A., Dallman, T.J., Redfern, O.C., Structural diversity of domain superfamilies in the CATH database (2006) J. Mol. Biol, 360, pp. 725-741
  • Liu, R., Xu, H., Wei, Z., Crystal structure of human adenylate kinase 4 (L171P) suggests the role of hinge region in protein domain motion (2009) Biochem. Biophys. Res. Commun, 379, pp. 92-97
  • Amiri, M., Conserva, F., Panayiotou, C., The human adenylate kinase 9 is a nucleoside mono- And diphosphate kinase (2013) Int. J. Biochem. Cell Biol, 45, pp. 925-931
  • Panayiotou, C., Solaroli, N., Johansson, M., Evidence of an intact N-terminal translocation sequence of human mitochondrial adenylate kinase 4 (2010) Int. J. Biochem. Cell Biol, 42, pp. 62-69
  • Hanson, R.M., Prilusky, J., Renjian, Z., JSmol and the next-generation web-based representation of 3D molecular structure as applied to proteopedia (2013) Isr. J. Chem, 53, pp. 207-216

Citas:

---------- APA ----------
Monzon, A.M., Rohr, C.O., Fornasari, M.S. & Parisi, G. (2016) . CoDNaS 2.0: A comprehensive database of protein conformational diversity in the native state. Database, 2016.
http://dx.doi.org/10.1093/database/baw038
---------- CHICAGO ----------
Monzon, A.M., Rohr, C.O., Fornasari, M.S., Parisi, G. "CoDNaS 2.0: A comprehensive database of protein conformational diversity in the native state" . Database 2016 (2016).
http://dx.doi.org/10.1093/database/baw038
---------- MLA ----------
Monzon, A.M., Rohr, C.O., Fornasari, M.S., Parisi, G. "CoDNaS 2.0: A comprehensive database of protein conformational diversity in the native state" . Database, vol. 2016, 2016.
http://dx.doi.org/10.1093/database/baw038
---------- VANCOUVER ----------
Monzon, A.M., Rohr, C.O., Fornasari, M.S., Parisi, G. CoDNaS 2.0: A comprehensive database of protein conformational diversity in the native state. Database. 2016;2016.
http://dx.doi.org/10.1093/database/baw038