Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Immunophilins are proteins that contain a PPIase domain as a family signature. Low-molecular-weight immunophilins were first described associated to immunosuppressive action and protein folding. Recent studies of other members of the family have led to the identification of their participation in basic processes such as protein-protein interactions, signal transduction cascades, cell differentiation, cell cycle progression, metabolic activity, apoptosis mechanisms, microorganisms infection, cancer, neurotrophism and neuroprotection, among several other physiological and pathophysiological processes. Due to all these emerging features, the development of specific ligands for immunophilins appears to have promising perspectives, in particular in the fields of cancer biology and neuroregeneration fields. We review the emerging role of immunophilins in protein transport, transcription regulation, malignancies development and neurotrophic action, in addition to a number of biological properties that transform these proteins in potential targets for novel therapeutic strategies. © 2013 Future Science Ltd.

Registro:

Documento: Artículo
Título:Hsp90-binding immunophilins as a potential new platform for drug treatment
Autor:Erlejman, A.G.; Lagadari, M.; Galigniana, M.D.
Filiación:Departamento de Química Biológica-IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (C1428EGA), Argentina
Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires (C1428ADN), Buenos Aires, Argentina
Palabras clave:alisporivir; apolipoprotein E; corticosteroid receptor; cyclin D1; cyclosporin A; fk 506 binding protein; glucocorticoid receptor; heat shock protein 90; immunophilin; rapamycin; tacrolimus; transcription factor YY1; Alzheimer disease; amino acid sequence; apoptosis; breast carcinoma; cell activity; cell cycle progression; cell differentiation; cell metabolism; chromatin assembly and disassembly; chromatin structure; colorectal carcinoma; genetic transcription; hepatitis C; human; immunoreactivity; metastatic melanoma; molecular weight; nerve cell differentiation; neuroprotection; neurotropism; nonhuman; pathophysiology; phase 3 clinical trial (topic); priority journal; prostate carcinoma; protein folding; protein motif; protein protein interaction; protein transport; review; signal transduction; tetratricopeptide repeat; transcription initiation; transcription regulation; Animals; Drug Discovery; HSP90 Heat-Shock Proteins; Humans; Immunophilins; Neoplasms; Neurogenesis; Protein Binding; Protein Transport; Transcriptional Activation
Año:2013
Volumen:5
Número:5
Página de inicio:591
Página de fin:607
DOI: http://dx.doi.org/10.4155/fmc.13.7
Título revista:Future Medicinal Chemistry
Título revista abreviado:Future. Med. Chem.
ISSN:17568919
CAS:alisporivir, 254435-95-5; cyclosporin A, 59865-13-3, 63798-73-2; rapamycin, 53123-88-9; tacrolimus, 104987-11-3; HSP90 Heat-Shock Proteins; Immunophilins, 5.2.1.8
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17568919_v5_n5_p591_Erlejman

Referencias:

  • Kang, C.B., Hong, Y., Dhe-Paganon, S., Yoon, H.S., FKBP family proteins: Immunophilins with versatile biological functions (2008) Neurosignals, 16 (4), pp. 318-325
  • Li, H., Rao, A., Hogan, P.G., Interaction of calcineurin with substrates and targeting proteins (2011) Trends Cell Biol, 21 (2), pp. 91-103
  • Callebaut, I., Renoir, J.M., Lebeau, M.C., An immunophilin that binds M(r) 90,000 heat shock protein: Main structural features of a mammalian p59 protein (1992) Proc. Natl Acad. Sci. USA, 89 (14), pp. 6270-6274
  • Smith, D.F., Tetratricopeptide repeat cochaperones in steroid receptor complexes (2004) Cell Stress Chaperones, 9 (2), pp. 109-121
  • Aviezer-Hagai, K., Skovorodnikova, J., Galigniana, M., Arabidopsis immunophilins ROF1 (AtFKBP62) and ROF2 (AtFKBP65) exhibit tissue specificity, are heat-stress induced, and bind HSP90 (2007) Plant Mol. Biol., 63 (2), pp. 237-255
  • Sumanasekera, W.K., Tien, E.S., Turpey, R., Vanden Heuvel, J.P., Perdew, G.H., Evidence that peroxisome proliferator-activated receptor alpha is complexed with the 90 kDa heat shock protein and the hepatitis virus B X-associated protein 2 (2003) J. Biol. Chem., 278 (7), pp. 4467-4473
  • Edlich, F., Lucke, C., From cell death to viral replication: The diverse functions of the membrane-associated FKBP38 (2011) Curr. Opin. Pharmacol., 11 (4), pp. 348-353
  • Crackower, M.A., Kolas, N.K., Noguchi, J., Essential role of Fkbp6 in male fertility and homologous chromosome pairing in meiosis (2003) Science, 300 (5623), pp. 1291-1295
  • Jarczowski, F., Jahreis, G., Erdmann, F., Schierhorn, A., Fischer, G., Edlich, F., FKBP36 is an inherent multifunctional glyceraldehyde- 3-phosphate dehydrogenase inhibitor (2009) J. Biol. Chem., 284 (2), pp. 766-773
  • Lu, K.P., Zhou, X.Z., The prolyl isomerase PIN1: A pivotal new twist in phosphorylation signaling and disease (2007) Nat. Rev. Mol. Cell Biol., 8 (11), pp. 904-916
  • Lee, T.H., Pastorino, L., Lu, K.P., Peptidyl-prolyl cis-trans isomerase Pin1 in ageing, cancer and Alzheimer disease (2011) Expert Rev. Mol. Med., 13, pp. e21
  • Dong, L., Marakovits, J., Hou, X., Structure-based design of novel human Pin1 inhibitors (II (2010) Bioorg. Med. Chem. Lett., 20 (7), pp. 2210-2214
  • Liu, C., Jin, J., Chen, L., Synthesis and biological evaluation of novel human Pin1 inhibitors with benzophenone skeleton (2012) Bioorg. Med. Chem., 20 (9), pp. 2992-2999
  • Schiene-Fischer, C., Aumuller, T., Fischer, G., Peptide bond cis/trans isomerases: A biocatalysis perspective of conformational dynamics in proteins (2013) Curr. Top. Chem., 328, pp. 35-67
  • Barik, S., Immunophilins: For the love of proteins (2006) Cell. Mol. Life Sci., 63 (24), pp. 2889-2900
  • Gold, B.G., Villafranca, J.E., Neuroimmunophilin ligands: The development of novel neuroregenerative/ neuroprotective compounds (2003) Curr. Top. Med. Chem., 3 (12), pp. 1368-1375
  • Quinta, H.R., Galigniana, M.D., The neuroregenerative mechanism mediated by the Hsp90-binding immunophilin FKBP52 resembles the early steps of neuronal differentiation (2012) Br. J. Pharmacol., 166 (2), pp. 637-649
  • George, S., Pili, R., Carducci, M.A., Kim, J.J., Role of immunotherapy for renal cell cancer in 2011 (2011) J. Natl Compr. Canc. Netw., 9 (9), pp. 1011-1018
  • Shi, Y., Serine/threonine phosphatases: Mechanism through structure (2009) Cell, 139 (3), pp. 468-484
  • Das, A.K., Helps, N.R., Cohen, P.T., Barford, D., Crystal structure of the protein serine/ threonine phosphatase 2C at 2.0 A resolution (1996) EMBO J, 15 (24), pp. 6798-6809
  • Chattopadhaya, S., Harikishore, A., Yoon, H.S., Role of FK506 binding proteins in neurodegenerative disorders (2011) Curr. Med. Chem., 18 (35), pp. 5380-5397
  • Storer, C.L., Dickey, C.A., Galigniana, M.D., Rein, T., Cox, M.B., FKBP51 and FKBP52 in signaling and disease (2011) Trends Endocrinol. Metab., 22 (12), pp. 481-490
  • Silverstein, A.M., Galigniana, M.D., Kanelakis, K.C., Radanyi, C., Renoir, J.M., Pratt, W.B., Different regions of the immunophilin FKBP52 determine its association with the glucocorticoid receptor, hsp90, and cytoplasmic dynein (1999) J. Biol. Chem., 274 (52), pp. 36980-36986
  • Galigniana, M.D., Echeverria, P.C., Erlejman, A.G., Piwien-Pilipuk, G., Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore (2010) Nucleus, 1 (4), pp. 299-308
  • Gallo, L.I., Ghini, A.A., Piwien Pilipuk, G., Galigniana, M.D., Differential recruitment of tetratricorpeptide repeat domain immunophilins to the mineralocorticoid receptor influences both heat-shock protein 90-dependent retrotransport and hormone-dependent transcriptional activity (2007) Biochemistry, 46 (49), pp. 14044-14057
  • Davies, T.H., Sanchez, E.R., Fkbp52 (2005) Int. J. Biochem. Cell Biol., 37 (1), pp. 42-47
  • Galigniana, M.D., Erlejman, A.G., Monte, M., Gomez-Sanchez, C., Piwien-Pilipuk, G., The hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events (2010) Mol. Cell. Biol., 30 (5), pp. 1285-1298
  • Thomas, M., Harrell, J.M., Morishima, Y., Peng, H.M., Pratt, W.B., Lieberman, A.P., Pharmacologic and genetic inhibition of hsp90-dependent trafficking reduces aggregation and promotes degradation of the expanded glutamine androgen receptor without stress protein induction (2006) Hum. Mol. Genet., 15 (11), pp. 1876-1883
  • Galigniana, M.D., Harrell, J.M., O'Hagen, H.M., Ljungman, M., Pratt, W.B., Hsp90-binding immunophilins link p53 to dynein during p53 transport to the nucleus (2004) J. Biol. Chem., 279 (21), pp. 22483-22489
  • Colo, G.P., Rubio, M.F., Nojek, I.M., The p160 nuclear receptor co-activator RAC3 exerts an anti-apoptotic role through a cytoplasmatic action (2008) Oncogene, 27 (17), pp. 2430-2444
  • Zhao, W., Zhong, L., Wu, J., Role of cellular FKBP52 protein in intracellular trafficking of recombinant adeno-associated virus 2 vectors (2006) Virology, 353 (2), pp. 283-293
  • Walker, V.E., Atanasiu, R., Lam, H., Shrier, A., Co-chaperone FKBP38 promotes HERG trafficking (2007) J. Biol. Chem., 282 (32), pp. 23509-23516
  • Li, P., Ding, Y., Wu, B., Shu, C., Shen, B., Rao, Z., Structure of the N-terminal domain of human FKBP52 (2003) Acta Crystallogr. D Biol. Crystallogr., 59 (PART 1), pp. 16-22
  • Vafopoulou, X., Steel, C.G., Cytoplasmic travels of the ecdysteroid receptor in target cells: Pathways for both genomic and non-genomic actions (2012) Front. Endocrinol. (Lausanne, 3, p. 43
  • Galigniana, M.D., Morishima, Y., Gallay, P.A., Pratt, W.B., Cyclophilin-A is bound through its peptidylprolyl isomerase domain to the cytoplasmic dynein motor protein complex (2004) J. Biol. Chem., 279 (53), pp. 55754-55759
  • Caballes, R., Cyclosporine, R.Mw., Hepatitis C, (2012) Open J. Organ Transpl. Surg., 2, pp. 32-36
  • Von Hahn, T., Ciesek, S., Manns, M.P., Arrest all accessories - Inhibition of hepatitis C virus by compounds that target host factors (2011) Discov. Med., 12 (64), pp. 237-244
  • Echeverria, P.C., Mazaira, G., Erlejman, A., Gomez-Sanchez, C., Piwien Pilipuk, G., Galigniana, M.D., Nuclear import of the glucocorticoid receptor-hsp90 complex through the nuclear pore complex is mediated by its interaction with Nup62 and importin beta (2009) Mol. Cell. Biol., 29 (17), pp. 4788-4797
  • Galigniana, M.D., Harrell, J.M., Murphy, P.J., Binding of hsp90-associated immunophilins to cytoplasmic dynein: Direct binding and in vivo evidence that the peptidylprolyl isomerase domain is a dynein interaction domain (2002) Biochemistry, 41 (46), pp. 13602-13610
  • Vermeer, H., Hendriks-Stegeman, B.I., Van Der Burg, B., Van Buul-Offers, S.C., Jansen, M., Glucocorticoid-induced increase in lymphocytic FKBP51 messenger ribonucleic acid expression: A potential marker for glucocorticoid sensitivity, potency, and bioavailability (2003) J. Clin. Endocrinol. Metab., 88 (1), pp. 277-284
  • Chambraud, B., Belabes, H., Fontaine-Lenoir, V., Fellous, A., Baulieu, E.E., The immunophilin FKBP52 specifically binds to tubulin and prevents microtubule formation (2007) FASEB J, 21 (11), pp. 2787-2797
  • Quinta, H.R., Galigniana, N.M., Erlejman, A.G., Lagadari, M., Piwien-Pilipuk, G., Galigniana, M.D., Management of cytoskeleton architecture by molecular chaperones and immunophilins (2011) Cell Signal, 23 (12), pp. 1907-1920
  • Quintá, H.R., Maschi, D., Gomez-Sanchez, C., Piwien Pilipuk, G., Galigniana, M.D., Subcellular rearrangement of hsp90-binding immunophilins accompanies neuronal differentiation and neurite outgrowth (2010) J. Neurochem., 115, pp. 716-734
  • Yao, Y.L., Liang, Y.C., Huang, H.H., Yang, W.M., FKBPs in chromatin modification and cancer (2011) Curr. Opin. Pharmacol., 11 (4), pp. 301-307
  • Yang, W.M., Yao, Y.L., Seto, E., The FK506- binding protein 25 functionally associates with histone deacetylases and with transcription factor YY1 (2001) EMBO J, 20 (17), pp. 4814-4825
  • Ochocka, A.M., Kampanis, P., Nicol, S., FKBP25, a novel regulator of the p53 pathway, induces the degradation of MDM2 and activation of p53 (2009) FEBS Lett, 583 (4), pp. 621-626
  • Gorlich, D., Kutay, U., Transport between the cell nucleus and the cytoplasm (1999) Annu. Rev. Cell Dev. Biol., 15, pp. 607-660
  • Moretto-Zita, M., Jin, H., Shen, Z., Zhao, T., Briggs, S.P., Xu, Y., Phosphorylation stabilizes Nanog by promoting its interaction with Pin1 (2010) Proc. Natl Acad. Sci. USA, 107 (30), pp. 13312-13317
  • Sivils, J.C., Storer, C.L., Galigniana, M.D., Cox, M.B., Regulation of steroid hormone receptor function by the 52 kDa FK506-binding protein (FKBP52 (2011) Curr. Opin. Pharmacol., 11 (4), pp. 314-319
  • Stechschulte, L.A., Sanchez, E.R., FKBP51 - A selective modulator of glucocorticoid and androgen sensitivity (2011) Curr. Opin. Pharmacol., 11 (4), pp. 332-337
  • Chen, H., Yong, W., Hinds Jr., T.D., Fkbp52 regulates androgen receptor transactivation activity and male urethra morphogenesis (2010) J. Biol. Chem., 285 (36), pp. 27776-27784
  • Periyasamy, S., Hinds Jr., T., Shemshedini, L., Shou, W., Sanchez, E.R., FKBP51 and Cyp40 are positive regulators of androgen-dependent prostate cancer cell growth and the targets of FK506 and cyclosporin A (2010) Oncogene, 29 (11), pp. 1691-1701
  • Eitoku, M., Sato, L., Senda, T., Horikoshi, M., Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly (2008) Cell Mol. Life Sci., 65 (3), pp. 414-444
  • Leclercq, M., Vinci, F., Galat, A., Mammalian FKBP-25 and its associated proteins (2000) Arch. Biochem. Biophys., 380 (1), pp. 20-28
  • Solassol, J., Mange, A., Maudelonde, T., FKBP family proteins as promising new biomarkers for cancer (2011) Curr. Opin. Pharmacol., 11 (4), pp. 320-325
  • Gallo, L.I., Lagadari, M., Piwien-Pilipuk, G., Galigniana, M.D., The 90 kDa heat-shock protein (Hsp90)-binding immunophilin FKBP51 is a mitochondrial protein that translocates to the nucleus to protect cells against oxidative stress (2011) J. Biol. Chem., 286 (34), pp. 30152-30160
  • Li, L., Lou, Z., Wang, L., The role of FKBP5 in cancer aetiology and chemoresistance (2011) Br. J. Cancer, 104 (1), pp. 19-23
  • Pei, H., Li, L., Fridley, B.L., FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt (2009) Cancer Cell, 16 (3), pp. 259-266
  • Romano, S., D'Angelillo, A., Pacelli, R., Role of FK506-binding protein 51 in the control of apoptosis of irradiated melanoma cells (2010) Cell Death Differ, 17 (1), pp. 145-157
  • Mukaide, H., Adachi, Y., Taketani, S., FKBP51 expressed by both normal epithelial cells and adenocarcinoma of colon suppresses proliferation of colorectal adenocarcinoma (2008) Cancer Invest, 26 (4), pp. 385-390
  • Periyasamy, S., Warrier, M., Tillekeratne, M.P., Shou, W., Sanchez, E.R., The immunophilin ligands cyclosporin A and FK506 suppress prostate cancer cell growth by androgen receptor-dependent and -independent mechanisms (2007) Endocrinology, 148 (10), pp. 4716-4726
  • Ostrow, K.L., Park, H.L., Hoque, M.O., Pharmacologic unmasking of epigenetically silenced genes in breast cancer (2009) Clin. Cancer Res., 15 (4), pp. 1184-1191
  • Pearson, J.D., Mohammed, Z., Bacani, J.T., Lai, R., Ingham, R.J., The heat shock protein-90 co-chaperone, Cyclophilin 40, promotes ALK-positive, anaplastic large cell lymphoma viability and its expression is regulated by the NPM-ALK oncoprotein (2012) BMC Cancer, 12, p. 229
  • Heldring, N., Pike, A., Andersson, S., Estrogen receptors: How do they signal and what are their targets (2007) Physiol. Rev., 87 (3), pp. 905-931
  • Renoir, J.M., Estradiol receptors in breast cancer cells: Associated co-factors as targets for new therapeutic approaches (2012) Steroids, 77 (12), pp. 1249-1261
  • Gougelet, A., Bouclier, C., Marsaud, V., Estrogen receptor alpha and beta subtype expression and transactivation capacity are differentially affected by receptor-, hsp90- and immunophilin-ligands in human breast cancer cells (2005) J. Steroid Biochem. Mol. Biol., 94 (1-3), pp. 71-81
  • Meyer, B.K., Pray-Grant, M.G., Vanden Heuvel, J.P., Perdew, G.H., Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity (1998) Mol. Cell. Biol., 18 (2), pp. 978-988
  • Cai, W., Kramarova, T.V., Berg, P., Korbonits, M., Pongratz, I., The immunophilin-like protein XAP2 is a negative regulator of estrogen signaling through interaction with estrogen receptor alpha (2011) PLoS ONE, 6 (10), pp. e25201
  • De Leon, J.T., Iwai, A., Feau, C., Targeting the regulation of androgen receptor signaling by the heat shock protein 90 cochaperone FKBP52 in prostate cancer cells (2011) Proc. Natl Acad. Sci. USA, 108 (29), pp. 11878-11883
  • Edlich, F., Weiwad, M., Wildemann, D., The specific FKBP38 inhibitor N-(Ń,Ń- dimethylcarboxamidomethyl)cycloheximide has potent neuroprotective and neurotrophic properties in brain ischemia (2006) J. Biol. Chem., 281 (21), pp. 14961-14970
  • Gold, B.G., Armistead, D.M., Wang, M.S., Non- FK506-binding protein-12 neuroimmunophilin ligands increase neurite elongation and accelerate nerve regeneration (2005) J. Neurosci. Res., 80 (1), pp. 56-65
  • Gold, B.G., Voda, J., Yu, X., Gordon, H., The immunosuppressant FK506 elicits a neuronal heat shock response and protects against acrylamide neuropathy (2004) Exp. Neurol., 187 (1), pp. 160-170
  • Gold, B.G., Voda, J., Yu, X., McKeon, G., Bourdette, D.N., FK506 and a nonimmunosuppressant derivative reduce axonal and myelin damage in experimental autoimmune encephalomyelitis: Neuroimmunophilin ligand-mediated neuroprotection in a model of multiple sclerosis (2004) J. Neurosci. Res., 77 (3), pp. 367-377
  • Pong, K., Zaleska, M.M., Therapeutic implications for immunophilin ligands in the treatment of neurodegenerative diseases (2003) Curr. Drug Targets CNS Neurol. Disord., 2 (6), pp. 349-356
  • Gerard, M., Deleersnijder, A., Demeulemeester, J., Debyser, Z., Baekelandt, V., Unraveling the role of peptidyl-prolyl isomerases in neurodegeneration (2011) Mol. Neurobiol., 44 (1), pp. 13-27
  • Quintá, H.R., Maschi, D., Gomez-Sanchez, C., Piwien-Pilipuk, G., Galigniana, M.D., Subcellular rearrangement of hsp90-binding immunophilins accompanies neuronal differentiation and neurite outgrowth (2010) J. Neurochem., 115 (3), pp. 716-734
  • Sanokawa-Akakura, R., Dai, H., Akakura, S., A novel role for the immunophilin FKBP52 in copper transport (2004) J. Biol. Chem., 279 (27), pp. 27845-27848
  • Zheng, W., Monnot, A.D., Regulation of brain iron and copper homeostasis by brain barrier systems: Implication in neurodegenerative diseases (2012) Pharmacol. Ther., 133 (2), pp. 177-188
  • Mills, E., Dong, X.P., Wang, F., Xu, H., Mechanisms of brain iron transport: Insight into neurodegeneration and CNS disorders (2010) Future Med. Chem., 2 (1), pp. 51-64
  • Chambraud, B., Sardin, E., Giustiniani, J., A role for FKBP52 in Tau protein function (2010) Proc. Natl Acad. Sci. USA, 107 (6), pp. 2658-2663
  • Salminen, A., Ojala, J., Kaarniranta, K., Hiltunen, M., Soininen, H., Hsp90 regulates tau pathology through co-chaperone complexes in Alzheimer's disease (2011) Prog. Neurobiol., 93 (1), pp. 99-110
  • Jinwal, U.K., Koren III, J., Borysov, S.I., The Hsp90 cochaperone, FKBP51, increases Tau stability and polymerizes microtubules (2010) J. Neurosci., 30 (2), pp. 591-599
  • Islam, M.S., Transient receptor potential channels (2011) Advances in Experimental Medicine and Biology, , (1st edition). Islam MS (Ed.). Springer, NY, USA
  • Parekh, A.B., Putney Jr., J.W., Store-operated calcium channels (2005) Physiol. Rev., 85 (2), pp. 757-810
  • Uchino, H., Kuroda, Y., Morota, S., Probing the molecular mechanisms of neuronal degeneration: Importance of mitochondrial dysfunction and calcineurin activation (2008) J. Anesth., 22 (3), pp. 253-262
  • Golstein, P., Kroemer, G., Cell death by necrosis: Towards a molecular definition (2007) Trends Biochem. Sci., 32 (1), pp. 37-43
  • Bell, R.D., Winkler, E.A., Singh, I., Apolipoprotein e controls cerebrovascular integrity via cyclophilin A (2012) Nature, 485 (7399), pp. 512-516
  • Tribouillard-Tanvier, D., Carroll, J.A., Moore, R.A., Striebel, J.F., Chesebro, B., Role of cyclophilin A from brains of prion-infected mice in stimulation of cytokine release by microglia and astroglia in vitro (2012) J. Biol. Chem., 287 (7), pp. 4628-4639
  • Pastorino, L., Sun, A., Lu, P.J., The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production (2006) Nature, 440 (7083), pp. 528-534
  • Sultana, R., Boyd-Kimball, D., Poon, H.F., Oxidative modification and down-regulation of Pin1 in Alzheimer's disease hippocampus: A redox proteomics analysis (2006) Neurobiol. Aging, 27 (7), pp. 918-925
  • Ryo, A., Togo, T., Nakai, T., Prolyl-isomerase Pin1 accumulates in lewy bodies of parkinson disease and facilitates formation of alpha-synuclein inclusions (2006) J. Biol. Chem., 281 (7), pp. 4117-4125
  • Kockx, M., Jessup, W., Kritharides, L., Cyclosporin A and atherosclerosis - Cellular pathways in atherogenesis (2010) Pharmacol. Ther., 128 (1), pp. 106-118
  • Hackstein, H., Steinschulte, C., Fiedel, S., Sanglifehrin a blocks key dendritic cell functions in vivo and promotes long-term allograft survival together with low-dose CsA (2007) Am. J. Transplant, 7 (4), pp. 789-798
  • Immecke, S.N., Baal, N., Wilhelm, J., The cyclophilin-binding agent Sanglifehrin A is a dendritic cell chemokine and migration inhibitor (2011) PLoS ONE, 6 (3), pp. e18406
  • Cascone, S., Lamberti, G., Titomanlio, G., Barba, A.A., D'Amore, M., Microencapsulation effectiveness of small active molecules in biopolymer by ultrasonic atomization technique (2012) Drug Dev. Ind. Pharm., 38 (12), pp. 1486-1493
  • Estebanez-Perpina, E., Arnold, L.A., Nguyen, P., A surface on the androgen receptor that allosterically regulates coactivator binding (2007) Proc. Natl Acad. Sci. USA, 104 (41), pp. 16074-16079
  • Sankhala, K.K., Mita, M.M., Mita, A.C., Takimoto, C.H., Heat shock proteins: A potential anticancer target (2011) Curr. Drug Targets., 12 (14), pp. 2001-2008
  • Galigniana, N.M., Ballmer, L.T., Toneatto, J., Erlejman, A.G., Lagadari, M., Galigniana, M.D., Regulation of the glucocorticoid response to stress-related disorders by the Hsp90-binding immunophilin FKBP51 (2012) J. Neurochem., 122 (1), pp. 4-18
  • Touma, C., Gassen, N.C., Herrmann, L., FK506 binding protein 5 shapes stress responsiveness: Modulation of neuroendocrine reactivity and coping behavior (2011) Biol. Psychiatry, 70 (10), pp. 928-936
  • Hartmann, J., Wagner, K.V., Liebl, C., The involvement of FK506-binding protein 51 (FKBP5) in the behavioral and neuroendocrine effects of chronic social defeat stress (2012) Neuropharmacology, 62 (1), pp. 332-339
  • Schmidt, M.V., Paez-Pereda, M., Holsboer, F., Hausch, F., The prospect of FKBP51 as a drug target (2012) ChemMedChem, 7 (8), pp. 1351-1359
  • Gopalakrishnan, R., Kozany, C., Gaali, S., Evaluation of synthetic FK506 analogues as ligands for the FK506-binding proteins 51 and 52 (2012) J. Med. Chem., 55 (9), pp. 4114-4122
  • Lu, J.J., Bao, J.L., Wu, G.S., Quinones derived from plant secondary metabolites as anti-cancer agents (2012) Anticancer Agents Med. Chem., 13 (3), pp. 456-463
  • Guo, C., Hou, X., Dong, L., Structure-based design of novel human Pin1 inhibitors (I (2009) Bioorg. Med. Chem. Lett., 19 (19), pp. 5613-5616
  • Schiene-Fischer, C., Aumuller, T., Fischer, G., Peptide bond cis/trans isomerases: A biocatalysis perspective of conformational dynamics in proteins (2013) Top. Curr. Chem., 328, pp. 35-67

Citas:

---------- APA ----------
Erlejman, A.G., Lagadari, M. & Galigniana, M.D. (2013) . Hsp90-binding immunophilins as a potential new platform for drug treatment. Future Medicinal Chemistry, 5(5), 591-607.
http://dx.doi.org/10.4155/fmc.13.7
---------- CHICAGO ----------
Erlejman, A.G., Lagadari, M., Galigniana, M.D. "Hsp90-binding immunophilins as a potential new platform for drug treatment" . Future Medicinal Chemistry 5, no. 5 (2013) : 591-607.
http://dx.doi.org/10.4155/fmc.13.7
---------- MLA ----------
Erlejman, A.G., Lagadari, M., Galigniana, M.D. "Hsp90-binding immunophilins as a potential new platform for drug treatment" . Future Medicinal Chemistry, vol. 5, no. 5, 2013, pp. 591-607.
http://dx.doi.org/10.4155/fmc.13.7
---------- VANCOUVER ----------
Erlejman, A.G., Lagadari, M., Galigniana, M.D. Hsp90-binding immunophilins as a potential new platform for drug treatment. Future. Med. Chem. 2013;5(5):591-607.
http://dx.doi.org/10.4155/fmc.13.7