Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The development of milk functional foods including health-promoting green tea polyphenols represents a challenge for the food industry since the formation of protein-polyphenol complexes may affect both protein technological properties and polyphenols biological activity. The present work aimed at the characterization of complexes formed between green tea polyphenols and either β-lactoglobulin (β-lg) or caseinomacropeptide (CMP), as well as to evaluate how this complexation may impact on protein gelation and polyphenol antiproliferative activity against tumor cell lines. Particle size and charge of protein-polyphenol complexes depend on protein nature and pH. At pH 6 they had the smallest size and were soluble. The presence of polyphenols accelerated the gelation of both β-lg and CMP, and mainly affected viscoelasticity of β-lg gels. Polyphenol complexation by proteins did not inhibit its anti-proliferative activity. Moreover, they exerted a better performance on some particular tumor cell lines. © 2012 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Nanocomplex formation between β-lactoglobulin or caseinomacropeptide and green tea polyphenols: Impact on protein gelation and polyphenols antiproliferative activity
Autor:von Staszewski, M.; Jara, F.L.; Ruiz, A.L.T.G.; Jagus, R.J.; Carvalho, J.E.; Pilosof, A.M.R.
Filiación:CONICET, Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
Pharmacology and Toxicology Division, CPQBA, University of Campinas - UNICAMP, P.O. Box 6171, 13083-970 Campinas, Brazil
Palabras clave:Antitumor activity; Gelation; Green tea polyphenols; Interaction; Whey proteins
Año:2012
Volumen:4
Número:4
Página de inicio:800
Página de fin:809
DOI: http://dx.doi.org/10.1016/j.jff.2012.05.008
Título revista:Journal of Functional Foods
Título revista abreviado:J. Funct. Foods
ISSN:17564646
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17564646_v4_n4_p800_vonStaszewski

Referencias:

  • Baeza, R., Interacciones entre β-lactoglobulina y polisacáridos en coloides alimentarios (2003) Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, p. 253. , Universidad de Buenos Aires. PhD. Buenos Aires, Argentina
  • Baeza, R.I., Pilosof, A.M.R., Calorimetric studies of thermal denaturation of β-lactoglobulin in the presence of polysaccharides (2002) Lebensmittel-Wissenschaft und-Technologie, 35, pp. 393-399
  • Bromley, E.H.C., Krebs, M.R.H., Donald, A.M., Aggregation across the length-scales in β-lactoglobulin (2005) Faraday Discussions, 128, pp. 13-27
  • Burton, J., Skudder, P.J., (1987), Whey proteins. UK patent application GB 2188526 A1; Clark, A.H., Kavanagh, G.M., Ross-Murphy, S.B., Globular protein gelation-theory and experiment (2001) Food Hydrocolloids, 15, pp. 383-400
  • Clark, A.H., Ross-Murphy, S.B., Structural and mechanical properties of biopolymer gels (1987) Advances in Polymer Science, 83, pp. 57-192
  • Class, S.D., Dalton, C.R., Hancock, B.C., Differential scanning calorimetry: Applications in drug development (1999) Pharmacology Science and Technology Today, 2 (8), pp. 311-319
  • Chandra Mohan, K.V.P., Gunasekaran, P., Varalakshmi, E., Hara, Y., Nagini, S., In vitro evaluation of the anticancer effect of lactoferrin and tea polyphenol combination on oral carcinoma cells (2007) Cell Biology International, 31, pp. 599-608
  • Charlton, A.J., Baxter, N.J., Lokman Khan, M., Moir, A.J.G., Haslam, E., Davies, A.P., Williamson, M.P., Polyphenol/peptide binding and precipitation (2002) Journal of Agricultural and Food Chemistry, 50, pp. 1593-1601
  • Chen, C., Shen, G.X., Hebbar, V., Hu, R., Owuor, E.D., Kong, A.N.T., Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells (2003) Carcinogenesis, 24, pp. 1369-1378
  • Farías, M.E., Martinez, M.J., Pilosof, A.M.R., Casein glycomacropeptide pH dependent self-assembly and cold gelation (2010) International Dairy Journal, 20, pp. 79-88
  • Frazier, R.A., Papadopoulou, A., Green, R.J., Isothermal titration calorimetry study of epicatechin binding to serum albumin (2006) Journal of Pharmaceutical and Biomedical Analysis, 41, pp. 1602-1605
  • González de Mejía, E., Song, Y.S., Heck, C.I., Ramírez-Mares, M.V., Yerba mate tea (Ilex paraguariensis): Phenolics, antioxidant capacity and in vitro inhibition of colon cancer cell proliferation (2010) Journal of Functional Foods, 2, pp. 23-34
  • Harbourne, N., Jacquier, J.C., O'Riordan, D., Effects of addition of phenolic compounds on the acid gelation of milk (2011) International Dairy Journal, 21 (3), pp. 185-191
  • Harnsilawat, T., Pongsawatmanit, R., McClements, D.J., Characterization of β-lactoglobulin-sodium alginate interactions in aqueous solutions: A calorimetry, light scattering, electrophoretic mobility and solubility study (2006) Food Hydrocolloids, 20, pp. 577-585
  • Haug, I.J., Skar, H.M., Vegarud, G.E., Langsrud, T., Draget, K.I., Electrostatic effects on β-lactoglobulin transitions during heat denaturation as studied by differential scanning calorimetry (2009) Food Hydrocolloids, 23 (8), pp. 2287-2293
  • Hoffmann, M.A.M., Roefs, S.P.F.M., Verheul, M., van Mil, P.J.J.M., de Kruif, K.G., Aggregation of β-lactoglobulin studied by in situ light scattering (1996) Journal of Dairy Research, 63, pp. 423-440
  • Huh, S.W., Bae, S.M., Kim, Y.-W., Lee, J.M., Namkoong, S.E., Lee, I.P., Kim, S.H., Ahn, W.S., Anticancer effects of (-)-epigallocatechin-3-gallate on ovarian carcinoma cell lines (2004) Gynecologic Oncology, 94 (3), pp. 760-768
  • Jöbstl, E., Ó Connell, J., Fairclough, P.A., Williamson, M.P., Astringency - A molecular model for polyphenol/protein binding (2004) Fibre Diffraction Review, 12, pp. 66-69
  • Khan, N., Mukhtar, H., Multitargeted therapy of cancer by green tea polyphenols (2008) Cancer Letters, 269, pp. 269-280
  • Kreuß, M., Strixner, T., Kulozik, U., The effect of glycosylation on the interfacial properties of bovine caseinomacropeptide (2009) Food Hydrocolloids, 23 (7), pp. 1818-1826
  • Kundu, T., Dey, S., Roy, M., Siddiqi, M., Bhattacharya, R.K., Induction of apoptosis in human leukemia cells by black tea and its polyphenol theaflavin (2005) Cancer Letters, 230, pp. 111-121
  • Laemmli, U.K., Cleavage of structural proteins during the assembly of head of bacteriophague T4 (1970) Nature, 227, pp. 680-687
  • Lambert, J.D., Lee, M.J., Diamond, L., Ju, J., Hong, J., Bose, M., Newmark, H.L., Yang, C.S., Dose-dependent levels of epigallocatechin-3-gallate in human colon cancer cells and mouse plasma and tissues (2006) Drug Metabolism and Disposition, 34, pp. 8-11
  • Liang, L., Tajmir-Riahi, H.A., Subirade, M., Interaction of β-lactoglobulin with resveratrol and its biological implications (2008) Biomacromolecules, 9 (1), pp. 50-56
  • Lin, H.-C., Chen, P.-C., Cheng, T.-J., Chen, R.L.C., Formation of tannin-albumin nano-particles at neutral pH as measured by light scattering techniques (2004) Analytical Biochemistry, 325, pp. 117-120
  • Majhi, P.R., Ganta, R.R., Vanam, R.P., Seyrek, E., Giger, K., Dubin, P.L., Electrostatically driven protein aggregation: Beta-lactoglobulin at low ionic strength (2006) Langmuir, 22, pp. 9150-9159
  • Martinez, M.J., Farías, M.E., Pilosof, A.M.R., The dynamics of heat gelation of casein glycomacropeptide - [beta]-lactoglobulin mixtures as affected by interactions in the aqueous phase (2010) International Dairy Journal, 20 (9), pp. 580-588
  • Martinez, M.J., Farías, M.E., Pilosof, A.M.R., Casein glycomacropeptide pH-driven self-assembly and gelation upon heating (2011) Food Hydrocolloids, , Corrected Proof
  • Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Boyd, M., Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines (1991) Journal of the National Cancer Institute, 83 (11), pp. 757-766
  • Naczk, M., Oickle, D., Pink, D., Shahidi, F., Protein precipitating capacity of crude canola tannins: Effect of pH, tannin, and protein concentrations (1996) Journal of Agricultural and Food Chemistry, 44, pp. 2144-2148
  • Nakano, T., Ozimek, L., Purification of glycomacropeptide from dialyzed and non-dializable sweet whey by anion-exchange chromatography at different pH values (2000) Biotechnology Letters, 22, pp. 1081-1086
  • Oku, N., Matsukawa, M., Yamakawa, S., Asai, T., Yahara, S., Hashimoto, F., Akizawa, T., Inhibitory effect of green tea polyphenols on membrane-type 1 matrix metalloproteinase, MT1-MMP (2003) Biological & Pharmaceutical Bulletin, 26 (9), pp. 1235-1238
  • Ould Eleya, M.M., Turgeon, S.L., The effects of pH on the rheology of β-lactoglobulin/κ-carrageenan mixed gels (2000) Food Hydrocolloids, 14, pp. 245-251
  • Pilosof, A.M.R., Gelificación (2000) Caracterización funcional y estructural de proteínas, pp. 75-95. , Eudeba, Buenos Aires, Argentina, A.M.R. Pilosof, G.B. Bartholomai (Eds.)
  • Poncet-Legrand, C., Edelmann, A., Putaux, J.L., Cartalade, D., Sarni-Manchado, P., Vernhet, A., Poly (L-proline) interactions with flavan-3-ols units: Influence of the molecular structure and the polyphenol/protein ratio (2006) Food Hydrocolloids, 20, pp. 687-697
  • Prigent, S.V.E., Gruppen, H., Visser, A.J.W.G., Van Koningsveld, G.A., De Jong, G.A.H., Voragen, A.G.J., Effects of non-covalent interactions with 5-O-caffeoylquinic acid (chlorogenic acid) on the heat denaturation and solubility of globular proteins (2003) Journal of Agricultural and Food Chemistry, 51, pp. 5088-5095
  • Relkin, P., Differential scanning calorimetry: a useful tool for studying protein denaturation (1994) Thermochimica Acta, 246, pp. 371-386
  • Relkin, P., Thermal unfolding of β-lactoglobulin, α-lactalbumin, and bovine serum albumin. A thermodynamic approach (1996) Critical Reviews in Food Science and Nutrition, 36 (6), pp. 565-601
  • Richard, T., Lefeuvre, D., Descendit, A., Quideau, S., Monti, J.P., Recognition characters in peptide-polyphenol complex formation (2006) Biochimica et Biophysica Acta, 1760, pp. 951-958
  • Riihimäki, L.H., Vainio, M.J., Heikura, J.M.S., Valkonen, K.H., Virtanen, V.T., Vuorela, P.M., Binding of phenolic compounds and their derivatives to bovine and reindeer β-lactoglobulin (2008) Journal of Agricultural and Food Chemistry, 56 (17), pp. 7721-7729
  • Ross, Y., Karel, M., Phase transitions of mixtures of amorphous polysaccharides and sugars (1991) Biotechnology Progress, 7, pp. 49-53
  • Shpigelman, A., Israeli, G., Livney, Y.D., Thermally-induced protein-polyphenol co-assemblies: Beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG (2010) Food Hydrocolloids, 24, pp. 735-743
  • Siebert, K.J., Troukhanova, N.V., Lynn, P.Y., Nature of polyphenol-protein interactions (1996) Journal of Agricultural and Food Chemistry, 44, pp. 80-85
  • Silva-Hernández, E., Nakano, T., Ozimek, L., Isolation and analysis of κ-casein glycomacropeptide from goat sweet whey (2002) Journal Agricultural and Food Chemistry, 50, pp. 2034-2038
  • Sittikijyothin, W., Sampaio, P., Gonçalves, M.P., Heat-induced gelation of β-lactoglobulin at varying pH: Effect of tara gum on the rheological and structural properties of the gels (2007) Food Hydrocolloids, 21, pp. 1046-1055
  • Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J.T., Boyd, M., New colorimetric cytotoxicity assay for anticancer-drug screening (1990) Journal of the National Cancer Institute, 82 (13), pp. 1107-1112
  • Stading, M., Hermansson, A.M., Viscoelastic behaviour of β-lactoglobulin structures (1990) Food Hydrocolloids, 4 (2), pp. 121-135
  • Stading, M., Hermansson, A.M., Inhomogeneous fine-stranded β-lactoglobulin gels (1992) Food Hydrocolloids, 5, pp. 455-470
  • Thomä-Worringer, C., Sørensen, J., López Fandiño, R., Health effects and technological features of caseinomacropeptide (2006) International Dairy Journal, 16, pp. 1324-1333
  • Vergote, D., Cren-Olivé, C., Chopin, V., Toillon, R.-A., Rolando, C., Hondermarck, H., Le Bourhis, X., (-)-Epigallocatechin (EGC) of green tea induces apoptosis of human breast cancer cells but not of their normal counterparts (2002) Breast Cancer Research and Treatment, 76, pp. 195-201
  • Verheul, M., Pedersen, J.S., Roefs, S.P.F.M., de Kruif, K.G., Association behavior of native β-lactoglobulin (1999) Bipolymers, 49, pp. 11-20
  • von Staszewski, M., Jagus, R.J., Pilosof, A.M.R., Influence of green tea polyphenols on the colloidal stability and gelation of WPC (2011) Food Hydrocolloids, 25 (5), pp. 1077-1084
  • von Staszewski, M., Pilosof, A.M.R., Jagus, R.J., Antioxidant and antimicrobial performance of different Argentinean green tea varieties as affected by whey proteins (2011) Food Chemistry, 125 (1), pp. 186-192
  • Wang, T., Lucey, J.A., Use of multi-angle laser light scattering and size-exclusion chromatography to characterize the molecular weight and types of aggregates present in commercial whey proteins products (2003) Journal of Dairy Science, 86, pp. 3090-3110
  • Wu, W., Clifford, M., Howell, N.K., The effect of instant green tea on the foaming and rheological properties of egg albumen proteins (2007) Journal of the Science of Food and Agriculture, 87, pp. 1810-1819
  • Yang, C.S., Wang, X., Lu, G., Picinich, S.C., Cancer prevention by tea: animal studies, molecular mechanisms and human relevance (2009) Nature Reviews Cancer, 9 (6), pp. 429-439
  • Yang, G.Y., Liao, J., Kim, K., Yurkow, E.J., Yang, C.S., Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols (1998) Carcinogenesis, 19, pp. 611-616
  • Zhong, Y., Chiou, Y.-S., Pan, M.-H., Ho, C.-T., Shahidi, F., Protective effects of epigallocatechin gallate (EGCG) derivatives on azoxymethane-induced colonic carcinogenesis in mice (2012) Journal of Functional Foods, 4 (1), pp. 323-330
  • Zhong, Y., Chiou, Y.-S., Pan, M.-H., Shahidi, F., Anti-inflammatory activity of lipophilic epigallocatechin gallate (EGCG) derivatives in LPS-stimulated murine macrophages (2012) Food Chemistry, 134 (2), pp. 742-748
  • Zhong, Y., Ma, C.-M., Shahidi, F., Antioxidant and antiviral activities of lipophilic epigallocatechin gallate (EGCG) derivatives (2012) Journal of Functional Foods, 4 (1), pp. 87-93
  • Zhong, Y., Shahidi, F., Lipophilised epigallocatechin gallate (EGCG) derivatives and their antioxidant potential in food and biological systems (2012) Food Chemistry, 131 (1), pp. 22-30

Citas:

---------- APA ----------
von Staszewski, M., Jara, F.L., Ruiz, A.L.T.G., Jagus, R.J., Carvalho, J.E. & Pilosof, A.M.R. (2012) . Nanocomplex formation between β-lactoglobulin or caseinomacropeptide and green tea polyphenols: Impact on protein gelation and polyphenols antiproliferative activity. Journal of Functional Foods, 4(4), 800-809.
http://dx.doi.org/10.1016/j.jff.2012.05.008
---------- CHICAGO ----------
von Staszewski, M., Jara, F.L., Ruiz, A.L.T.G., Jagus, R.J., Carvalho, J.E., Pilosof, A.M.R. "Nanocomplex formation between β-lactoglobulin or caseinomacropeptide and green tea polyphenols: Impact on protein gelation and polyphenols antiproliferative activity" . Journal of Functional Foods 4, no. 4 (2012) : 800-809.
http://dx.doi.org/10.1016/j.jff.2012.05.008
---------- MLA ----------
von Staszewski, M., Jara, F.L., Ruiz, A.L.T.G., Jagus, R.J., Carvalho, J.E., Pilosof, A.M.R. "Nanocomplex formation between β-lactoglobulin or caseinomacropeptide and green tea polyphenols: Impact on protein gelation and polyphenols antiproliferative activity" . Journal of Functional Foods, vol. 4, no. 4, 2012, pp. 800-809.
http://dx.doi.org/10.1016/j.jff.2012.05.008
---------- VANCOUVER ----------
von Staszewski, M., Jara, F.L., Ruiz, A.L.T.G., Jagus, R.J., Carvalho, J.E., Pilosof, A.M.R. Nanocomplex formation between β-lactoglobulin or caseinomacropeptide and green tea polyphenols: Impact on protein gelation and polyphenols antiproliferative activity. J. Funct. Foods. 2012;4(4):800-809.
http://dx.doi.org/10.1016/j.jff.2012.05.008