Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We develop a compact perturbative series for acoustic wave propagation in a medium with a non-Gaussian stochastic speed of sound. We use Martin-Siggia and Rose auxiliary field techniques to render the classical wave propagation problem into a 'quantum' field theory one, and then frame this problem within the so-called Schwinger-Keldysh of closed time-path (CTP) formalism. Variation of the so-called two-particle irreducible (2PI) effective action (EA), whose arguments are both the mean fields and the irreducible two point correlations, yields the Schwinger-Dyson and the Bethe-Salpeter equations. We work out the loop expansion of the 2PI CTP EA and show that, in the paradigmatic problem of overlapping spherical intrusions in an otherwise homogeneous medium, non-Gaussian corrections might be much larger than Gaussian ones at the same order of loops. © 2015 IOP Publishing Ltd.

Registro:

Documento: Artículo
Título:Wave propagation in non-Gaussian random media
Autor:Franco, M.; Calzetta, E.
Filiación:Physics Department, Buenos Aires University, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:field theory methods; random media; waves
Año:2015
Volumen:48
Número:4
DOI: http://dx.doi.org/10.1088/1751-8113/48/4/045206
Título revista:Journal of Physics A: Mathematical and Theoretical
Título revista abreviado:J. Phys. Math. Theor.
ISSN:17518113
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17518113_v48_n4_p_Franco

Referencias:

  • Tsang, L., Kong, J., (2001) Scattering of Electromagnetic Waves: Advanced Topics
  • Furutsu, K., (1982) Random Media and Boundaries
  • Akkermans, E., Montambaux, G., (2007) Mesoscopic Physics of Electrons and Photons
  • Voronovich, A.G., (1994) Wave Scattering from Rough Surfaces, 17
  • Sheng, P., (2006) Introduction to Wave Scattering, Localization and Mesoscopic Phenomena
  • Sato, H., Fehler, M.C., Maeda, T., (2012) Seismic Wave Propagation and Scattering in the Heterogeneous Earth
  • Elachi, C., Van Zyl, J., (2006) Introduction to the Physics and Techniques of Remote Sensing
  • Van Tiggelen, B.A., Skipetrov, S., (2003) Wave Scattering in Complex Media: From Theory to Applications
  • Potton, R.J., Reciprocity in optics (2004) Rep. Prog. Phys., 67 (5), p. 717
  • Van Tiggelen, B.A., Maynard, R., Reciprocity and coherent backscattering of light (1998) Wave Propagation in Complex Media, 96, p. 247
  • Hovenier, J.W., Symmetry relationships for scattering of polarized light in a slab of randomly oriented particles (1968) J. Atmos. Sci., 26, p. 488
  • Nieh, H.T., Chen, L., Sheng, P., Reply to Comment on Ward identities for transport of classical waves in disordered media (2001) Phys. Rev., 64
  • Barabanenkov Yu, N., Ozrin, V.D., Comment on Ward identities for transport of classical waves in disordered media (2001) Phys. Rev., 64
  • Nieh, H.T., Chen, L., Sheng, P., Ward identities for transport of classical waves in disordered media (1998) Phys. Rev., 57, p. 1145
  • Frisch, U., Wave propagation in random media (1968) Probabilistic Methods in Applied Mathematics
  • Lagendijk, A., Van Tiggelen, B.A., Resonant multiple scattering of light (1996) Phys. Rep., 270, p. 143
  • Wolfle, P., Vollhardt, D., Self-consistent diagrammatic theory of Anderson localization (1982) Anderson Localization, 39, p. 26
  • Vollhardt, D., Wolfle, P., Self-consistent theory of Anderson localization (1992) Electronic Phase Transitions, 32, p. 1
  • Salpeter, E.E., Bethe, H.A., A relativistic equation for bound-state problems (1951) Phys. Rev., 84, p. 1232
  • Bethe, H.A., Salpeter, E.E., (1957) Quantum Mechanics of One- And Two- Electron Atoms
  • Itzykson, C., Zuber, J.-B., (1980) Quantum Field Theory
  • Furutsu, K., Boundary-value problems of enhanced backscattering in a random medium and the inner structure of the Bethe-Salpeter equation (1995) Phys. Rev., 51, p. 2550
  • Furutsu, K., Statistical theory of scattering and propagation through a rough boundary - The Bethe-Salpeter equation and applications (1985) J. Math. Phys., 26, p. 2352
  • Soubret, A., Berginc, G., (2003) Effective Dielectric Constant for A Random Medium
  • Soubret, A., Berginc, G., (2003) Electromagnetic Wave Scattering from A Random Layer with Rough Interfaces: I. Coherent Field
  • Soubret, A., Berginc, G., (2003) Electromagnetic Wave Scattering from A Random Layer with Rough Interfaces: II. Diffusive Intensity
  • Knothe, A., (2012) Bachelor Thesis
  • Knothe, A., Wellens, T., Flux conservation in coherent backscattering and weak localization of light (2013) J. Phys. A: Math. Theor., 46
  • Karpiuk, T., Cherroret, N., Lee, K.L., Grémaud, B., Müller, C.A., Miniatura, C., Coherent forward scattering peak induced by Anderson localization (2012) Phys. Rev. Lett., 109
  • Eckert, F., Buchleitner, A., Wellens, T., Weak disorder corrections of the scattering and transport mean free path (2012) J. Phys. A: Math. Theor., 45
  • Fiebig, S., Aegerter, C.M., Bührer, W., Störzer, M., Akkermans, E., Montambaux, G., Maret, G., Conservation of energy in coherent backscattering of light (2008) Eur. Phys. Lett., 81 (6), p. 64004
  • Slavov, P., (2006) Coherent Multiple Backscattering of Waves in Random Medium beyond the Diffusion Approximation
  • Van Rossum, M.C.W., Nieuwenhuizen Th, M., Multiple scattering of classical waves: Microscopy, mesoscopy, and diffusion (1999) Rev. Mod. Phys., 71, p. 313
  • Van Tiggelen, B.A., Wiersma, A., Lagendijk, A., Self-consistent theory for the enhancement factor in coherent backscattering (1995) Europhys. Lett., 30 (1), p. 1
  • Hastings, M.B., Stone, A.D., Baranger, H.U., On the inequivalence of weak localization and coherent backscattering (1994) Phys. Rev., 50, p. 8230
  • Mandt, C.E., Tsang, L., Ishimaru, A., Copolarized and depolarized backscattering enhancement of random discrete scatterers of large size based on second-order ladder and cyclical theory (1990) J. Opt. Soc. Am., 7, p. 585
  • Vollhardt, D., Wölfle, P., Diagrammatic, self-consistent treatment of the Anderson localization problem in dimensions (1980) Phys. Rev., 22, p. 4666
  • Imperatore, P., Iodice, A., Riccio, D., Volumetric-perturbative reciprocal formulation for scattering from rough multilayers (2011) IEEE Trans. Antennas Propag., 59, p. 877
  • Imperatore, P., Iodice, A., Riccio, D., Second-order volumetric-perturbative reciprocal scattering theory (2012) IEEE Trans. Antennas Propag., 60, p. 1505
  • Imperatore, P., Iodice, A., Riccio, D., Consistency and validity of perturbative formulations for scattering from rough multilayers (2012) IEEE Trans. Antennas Propag., 60, p. 2019
  • Imperatore, P., Iodice, A., Riccio, D., Multi-reaction and scattering from rough multilayers (2012) Eur. J. Remote Sens., 45, p. 153
  • Emery, X., Ortiz, J.M., A comparison of random field models beyond bivariate distributions (2011) Math. Geosci., 43, p. 183
  • Bruno, O., The effective conductivity of strongly heterogeneous composites (1991) Proc. R. Soc., 433, p. 353
  • Torquato, S., (2002) Random Heterogeneous Materials, 16
  • Hori, M., Yonezawa, F., Statistical theory of effective electrical, thermal, and magnetic properties of random heterogeneous materials: IV. Effective medium theory and cumulant expansion method (1975) J. Math. Phys., 16, p. 352
  • Hori, M., Yonezawa, F., Statistical theory of effective electrical, thermal, and magnetic properties of random heterogeneous materials: V. One- and two-dimensional systems (1975) J. Math. Phys., 16, p. 365
  • Hori, M., Statistical theory of effective electrical, thermal, and magnetic properties of random heterogeneous materials: VI. Comment on the notion of a cell material (1975) J. Math. Phys., 16, p. 1772
  • Hori, M., Statistical theory of effective electrical, thermal, and magnetic properties of random heterogeneous materials: VI. Comment on the notion of a cell material (1976) J. Math. Phys., 17, p. 598
  • Hori, M., Statistical theory of effective electrical, thermal, and magnetic properties of random heterogeneous materials: VII. Comparison of different approaches (1977) J. Math. Phys., 18, p. 487
  • Hori, M., Statistical theory of effective electrical, thermal, and magnetic properties of random heterogeneous materials: II. Bounds for the effective permittivity of statistically anisotropic materials (1973) J. Math. Phys., 14, p. 1942
  • Hori, M., Statistical theory of effective electrical, thermal, and magnetic properties of random heterogeneous materials: I. Perturbation expansions for the effective permittivity of cell materials (1973) J. Math. Phys., 14, p. 514
  • Hori, M., Statistical theory of effective electrical, thermal, and magnetic properties of random heterogeneous materials: III. Perturbation treatment of the effective permittivity in completely random heterogeneous material (1974) J. Math. Phys., 15, p. 2177
  • Martin, P.C., Siggia, E.D., Rose, H.A., Statistical dynamics of classical systems (1973) Phys. Rev., 8, p. 423
  • De Dominicis, C., Peliti, L., Field-theory renormalization and critical dynamics above Tc: Helium, antiferromagnets, and liquid-gas systems (1978) Phys. Rev., 18, p. 353
  • Chen, Y.-C., Lebowitz, J.L., Liverani, C., Dissipative quantum dynamics in a boson bath (1989) Phys. Rev., 40, p. 4664
  • Kamenev, A., (2011) Field Theory of Non-Equilibriium Systems
  • Zanella, J., Calzetta, E., Renormalization group and nonequilibrium action in stochastic field theory (2002) Phys. Rev., 66
  • Calzetta, E., Hu, B.-L., (2008) Nonequilibrium Quantum Field Theory
  • Schwinger, J., Brownian motion of a quantum oscillator (1961) J. Math. Phys., 2, p. 407
  • Mahanthappa, K.T., Multiple production of photons in quantum electrodynamics (1962) Phys. Rev., 126, p. 329
  • Bakshi, P.M., Mahanthappa, K.T., Expectation value formalism in quantum field theory. i (1963) J. Math. Phys., 4, p. 1
  • Bakshi, P.M., Mahanthappa, K.T., Expectation value formalism in quantum field theory. II (1963) J. Math. Phys., 4, p. 12
  • Keldysh, L.V., Diagram technique for nonequilibrium processes (1964) Zh. Eksp. Teor. Fiz., 47, p. 1515
  • Keldysh, L.V., (1965) Sov. Phys. - JETP, 20, p. 1018
  • Luttinger, J., Ward, J., Ground-state energy of many-fermion systems (1960) Phys. Rev., 118, p. 1417
  • De Dominicis, C., Martin, P.C., Stationary entropy principle and renormalization in normal and superfluid systems: I (1964) J. Math. Phys., 5, p. 14
  • De Dominicis, C., Martin, P.C., Stationary entropy principle and renormalization in normal and superfluid systems: II (1964) J. Math. Phys., 5, p. 31
  • Cornwall, J.M., Jackiw, R., Tomboulis, E., Effective action for composite operators (1974) Phys. Rev., 10, p. 2428
  • Negele, J., Orland, H., (1998) Quantum Many-Particle Systems
  • Calzetta, E., Two-particle irreducible effective action in gauge theories (2004) Int. J. Theor. Phys., 43, p. 767
  • Peralta-Ramos, J., Calzetta, E., Two-particle irreducible effective action approach to nonlinear current-conserving approximations in driven systems (2009) J. Phys.: Condens. Matter, 21 (21)
  • Calzetta, E., Hu, B.-L., Nonequilibrium quantum fields: Closed-time-path effective action, Wigner function, and Boltzmann equation (1988) Phys. Rev., 37, p. 2878
  • Zhou, G., Su, Z., Hao, B., Yu, L., Closed-time-path Greens functions and critical dynamics (1980) Phys. Rev., 22, p. 3385
  • Chou, K., Su, Z., Hao, B., Yu, L., Equilibrium and nonequilibrium formalisms made unified (1985) Phys. Rep., 118, p. 1
  • Calzetta, E., Hu, B.L., Correlations, decoherence, dissipation and noise in quantum field theory (1995) Heat Kernel Techniques and Quantum Gravity
  • Zinn-Justin, J., (1993) Quantum Field Theory and Critical Phenomena
  • Kleinert, H., (1990) Path Integrals in Quantum Mechanics, Statistics and Polymer Physics
  • Monin, A.S., Yaglom, A.M., (1971) Statistical Fluid Mechanics
  • McComb, W.D., (1994) The Physics of Fluid Turbulence
  • Frisch, U., (1995) Turbulence: The Legacy of A N Kolmogorov
  • Belinicher, V.I., Lvov, V.S., A scale-invariant theory of developed hydrodynamic turbulence (1987) Zh. Eksp. Teor. Fiz., 93, pp. 1269-1280
  • Belinicher, V.I., Lvov, V.S., (1987) Sov. Phys. - JETP, 66, pp. 303-313
  • Calzetta, E., (2009) Kadanoff-Baym Equations for Near-Kolmogorov Turbulence
  • Zanella, J., Calzetta, E., (2006) Renormalization Group Study of Damping in Nonequilibrium Field Theory
  • Shahbazi, F., Bahraminasab, A., Mehdi Vaez Allaei, S., Sahimi, M., Reza Rahimi Tabar, M., Localization of elastic waves in heterogeneous media with off-diagonal disorder and long-range correlations (2005) Phys. Rev. Lett., 94
  • Sepehrinia, R., Bahraminasab, A., Sahimi, M., Reza Rahimi Tabar, M., Dynamic renormalization group analysis of propagation of elastic waves in two-dimensional heterogeneous media (2008) Phys. Rev., 77
  • Dupuis, N., Renormalization group approach to interacting fermion systems in the two-particle-irreducible formalism (2005) Eur. Phys. J., 48, pp. 319-338
  • Blaizot, J.-P., Pawlowski Jan, M., Reinosa, U., Exact renormalization group and Φ-derivable approximations (2011) Phys. Lett., 696, p. 523
  • Blaizot, J.-P., Renormalization group flow equations with full momentum dependence (2011) Phil. Trans. R. Soc., 369, p. 2735
  • Carrington, M.E., Renormalization group flow equations connected to the n-particle-irreducible effective action (2013) Phys. Rev., 87
  • Dupuis, N., Nonperturbative renormalization-group approach to fermion systems in the two-particle-irreducible effective action formalism (2014) Phys. Rev., 89
  • Carrington, M.E., Fu, W.J., Fugleberg, T., Pickering, D., Russell, I., Bethe-Salpeter equations from the 4PI effective action (2013) Phys. Rev., 88
  • Carrington, M.E., Fu, W.-J., Pickering, D., Pulver, J.W., (2014) Renormalization Group Methods and the 2PI Effective Action

Citas:

---------- APA ----------
Franco, M. & Calzetta, E. (2015) . Wave propagation in non-Gaussian random media. Journal of Physics A: Mathematical and Theoretical, 48(4).
http://dx.doi.org/10.1088/1751-8113/48/4/045206
---------- CHICAGO ----------
Franco, M., Calzetta, E. "Wave propagation in non-Gaussian random media" . Journal of Physics A: Mathematical and Theoretical 48, no. 4 (2015).
http://dx.doi.org/10.1088/1751-8113/48/4/045206
---------- MLA ----------
Franco, M., Calzetta, E. "Wave propagation in non-Gaussian random media" . Journal of Physics A: Mathematical and Theoretical, vol. 48, no. 4, 2015.
http://dx.doi.org/10.1088/1751-8113/48/4/045206
---------- VANCOUVER ----------
Franco, M., Calzetta, E. Wave propagation in non-Gaussian random media. J. Phys. Math. Theor. 2015;48(4).
http://dx.doi.org/10.1088/1751-8113/48/4/045206