Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

An in-situ calibration of a logarithmic periodic dipole antenna with a frequency coverage of 30MHz to 80MHz is performed. Such antennas are part of a radio station system used for detection of cosmic ray induced air showers at the Engineering Radio Array of the Pierre Auger Observatory, the so-called Auger Engineering Radio Array (AERA). The directional and frequency characteristics of the broadband antenna are investigated using a remotely piloted aircraft carrying a small transmitting antenna. The antenna sensitivity is described by the vector effective length relating the measured voltage with the electric-field components perpendicular to the incoming signal direction. The horizontal and meridional components are determined with an overall uncertainty of 7.4 +0.9 -0.3 % and 10.3 +2.8 -1.7 % respectively. The measurement is used to correct a simulated response of the frequency and directional response of the antenna. In addition, the influence of the ground conductivity and permittivity on the antenna response is simulated. Both have a negligible influence given the ground conditions measured at the detector site. The overall uncertainties of the vector effective length components result in an uncertainty of 8.8 +2.1 -1.3 % in the square root of the energy fluence for incoming signal directions with zenith angles smaller than 60°. © 2017 IOP Publishing Ltd and Sissa Medialab.

Registro:

Documento: Artículo
Título:Calibration of the logarithmic-periodic dipole antenna (LPDA) radio stations at the Pierre Auger Observatory using an octocopter
Autor:Aab, A. et al.
Este artículo contiene 405 autores, consultelos en el artículo en formato pdf.
Filiación: Este artículo contiene 405 autores con sus filiaciones, consultelas en el artículo en formato pdf.
Palabras clave:Antennas; Detector alignment and calibration methods (lasers, sources, particlebeams); Large detector systems for particle and astroparticle physics; Particle detectors; Antenna arrays; Antennas; Augers; Calibration; Cosmic rays; Cosmology; Directive antennas; Electric fields; Observatories; Particle detectors; Radio stations; Astroparticle physics; Calibration method; Directional response; Electric field components; Frequency characteristic; Pierre Auger observatory; Remotely piloted aircraft; Vector effective length; Dipole antennas
Año:2017
Volumen:12
Número:10
DOI: http://dx.doi.org/10.1088/1748-0221/12/10/T10005
Título revista:Journal of Instrumentation
Título revista abreviado:J. Instrum.
ISSN:17480221
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17480221_v12_n10_p_Aab

Referencias:

  • Aab, A., The pierre auger cosmic ray observatory (2015) Nucl. Instrum. Meth. A, 798, p. 172. , [arXiv]
  • Falcke, H., Detection and imaging of atmospheric radio flashes from cosmic ray air showers (2005) Nature, 435, p. 313. , [astro-ph/0505383]
  • Ardouin, D., Radioelectric field features of extensive air showers observed with CODALEMA (2006) Astropart. Phys., 26, p. 341. , [astro-ph/0608550]
  • Schulz, J., (2015) Status and Prospects of the Auger Engineering Radio Array, in Proceedings of the 34th International Cosmic Ray Conference, , The Hague Netherlands, 30 Jul-6 Aug [PoS(ICRC2015)615]
  • Bezyazeekov, P.A., Measurement of cosmic-ray air showers with the tunka radio extension (Tunka-rex) (2015) Nucl. Instrum. Meth. A, 802, p. 89. , [arXiv]
  • Hörandel, J.R., Radio detection of cosmic rays with LOFAR (2015) Proceedings of the 34th International Cosmic Ray Conference, , The Hague Netherlands, 30 Jul-6 Aug [PoS(ICRC2015)033]
  • Huege, T., Radio detection of cosmic ray air showers in the digital era (2016) Phys. Rept., 620, p. 1. , [arXiv]
  • Schröder, F.G., Radio detection of cosmic-ray air showers and high-energy neutrinos (2017) Prog. Part. Nucl. Phys., 93, p. 1. , [arXiv]
  • Kahn, F.D., Lerche, I., Radiation from cosmic ray air showers (1966) Proc. Roy. Soc. Lond. A, 289, p. 206
  • Allan, H.R., Radio emission from extensive air showers (1971) Prog. Element. Part. Cosmic Ray Phys., 10, p. 169
  • Huege, T., Falcke, H., Radio emission from cosmic ray air showers: Coherent geosynchrotron radiation (2003) Astron. Astrophys., 412, p. 19. , [astro-ph/0309622]
  • Ardouin, D., Geomagnetic origin of the radio emission from cosmic ray induced air showers observed by CODALEMA (2009) Astropart. Phys., 31, p. 192. , [arXiv]
  • Abreu, P., Results of a self-triggered prototype system for radio-detection of extensive air showers at the pierre auger observatory (2012) JINST, 7, p. 11023. , [arXiv]
  • Askaryan, G., Excess negative charge of an electron-photon shower and its coherent radio emission (1962) Sov. Phys. JETP-USSR, 14, p. 441
  • Prescott, J.R., Hough, J.H., Pidcock, J.K., Mechanism of radio emission from extensive air showers (1971) Nature Phys. Sci., 223, p. 109
  • Bellétoile, A., Evidence for the charge-excess contribution in air shower radio emission observed by the CODALEMA experiment (2015) Astropart. Phys., 69, p. 50
  • Schellart, P., Polarized radio emission from extensive air showers measured with LOFAR (2014) JCAP, 10, p. 014. , [arXiv]
  • Aab, A., Probing the radio emission from air showers with polarization measurements (2014) Phys. Rev. D, 89, p. 052002. , [arXiv]
  • Heck, D., Knapp, J., Capdevielle, J., Schatz, G., Thouw, T., (1998) CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers, , Report FZKA 6019
  • Alvarez-Muñiz, J., Carvalho, W.R., Jr., Zas, E., Monte carlo simulations of radio pulses in atmospheric showers using ZHAireS (2012) Astropart. Phys., 35, p. 325. , [arXiv]
  • Huege, T., Ludwig, M., James, C.W., Simulating radio emission from air showers with CoREAS (2013) AIP Conf. Proc., 1535, p. 128. , [arXiv]
  • Glaser, C., Erdmann, M., Hörandel, J.R., Huege, T., Schulz, J., Simulation of radiation energy release in air showers (2016) JCAP, 9, p. 024. , [arXiv]
  • Apel, W.D., Reconstruction of the energy and depth of maximum of cosmic-ray air-showers from LOPES radio measurements (2014) Phys. Rev. D, 90, p. 062001. , [arXiv]
  • Nelles, A., The radio emission pattern of air showers as measured with LOFAR - A tool for the reconstruction of the energy and the shower maximum (2015) JCAP, 5, p. 018. , [arXiv]
  • Bezyazeekov, P.A., Radio measurements of the energy and the depth of the shower maximum of cosmic-ray air showers by tunka-rex (2016) JCAP, 1, p. 052. , [arXiv]
  • Aab, A., Measurement of the radiation energy in the radio signal of extensive air showers as a universal estimator of cosmic-ray energy (2016) Phys. Rev. Lett., 116, p. 241101. , [arXiv]
  • Aab, A., Energy estimation of cosmic rays with the engineering radio array of the pierre auger observatory (2016) Phys. Rev. D, 93, p. 122005. , [arXiv]
  • Link, K., Revised absolute amplitude calibration of the LOPES experiment (2015) Proceedings of the 34th International Cosmic Ray Conference, , The Hague Netherlands, 30 Jul-6 Aug [PoS(ICRC2015)311]
  • Hiller, R., Calibration of the absolute amplitude scale of the tunka radio extension (Tunka-rex) (2015) Proceedings of the 34th International Cosmic Ray Conference, , The Hague Netherlands, 30 Jul-6 Aug [PoS(ICRC2015)573]
  • Nelles, A., Calibrating the absolute amplitude scale for air showers measured at LOFAR (2015) JINST, 10, p. 11005. , [arXiv]
  • Weidenhaupt, K., (2014) Antenna Calibration and Energy Measurement of Ultra-high Energy Cosmic Rays with the Auger Engineering Radio Array, , Ph.D. Thesis, RWTH Aachen University
  • Abreu, P., Antennas for the detection of radio emission pulses from cosmic-ray (2012) JINST, 7, p. 10011. , [arXiv]
  • Friis, H.T., A note on a simple transmission formula (1946) Proc. IRE, 34, p. 254
  • Burke, G., Poggio, A., (1992) Numerical Electromagnetics Code (NEC) Method of Moments, , Lawrence Livermore National Laboratory, Technical Report, NEC-1 (1977), NEC-2 (1981), NEC-3 (1983), NEC-4
  • Coaxial Cable Specifications, , https://www.bundesnetzagentur.de
  • Stephan, M., Antennas, filters and preamplifiers designed for the radio detection of ultra-high-energy cosmic rays (2010) Proceedings of the Asia-Pacific-Microwave Conference 2010, pp. 1455-1458. , Yokohama Japan, 7-10 Dec
  • Octocopter XL from Mikro Kopter, , https://www.mikrocontroller.com/index.php?main-page=index&cPath=114
  • Bäuml, J., Measurement of the optical properties of the auger fluorescence telescopes (2013) Proceedings of the 33rd International Cosmic Rays Conference, , Rio de Janeiro Brazil
  • Šmída, R., First experimental characterization of microwave emission from cosmic ray air showers (2014) Phys. Rev. Lett., 113, p. 221101. , [arXiv]
  • Canon Ixus 132, , http://www.canon.de/for_home/product_finder/cameras/digital_camera/ixus/ixus_132/
  • Briechle, F., (2015) Octocopter Position Reconstruction for Calibrating the Auger Engineering Radio Array, , Master Thesis, RWTH Aachen University
  • Briechle, F., In-situ absolute calibration of electric-field amplitude measurements with the radio detector stations of the pierre auger observatory (2016) Proceedings of the 7th ARENA Conference, , Groningen Netherlands, 7-10 Jun
  • Hiper V, , https://www.topconpositioning.com/gnss/integrated-gnss-receivers/hiper-v
  • RSG1000 Signal Generator, , http://www.teseq.de/produkte/RSG-1000.php
  • Rohde & Schwarz FSH4 Spectrum and Network Analyzer, , https://www.rohde-schwarz.com/de/produkt/fsh-produkt-startseite_63493-8180.html
  • Agilent N9030A ESA Spectrum Analyzer, , http://literature.cdn.keysight.com/litweb/pdf/5990-3952EN.pdf?id=1759326
  • Schwarzbeck Mess-Elektronik Ultra Light BBOC 9217 Biconical Antenna with UBAA 9114 4:1 Balun, , http://schwarzbeck.de/Datenblatt/91149217.pdf
  • Krause, R., Antenna Development and Calibration for Measurements of Radio Emission from Extensive Air Showers at the Pierre Auger Observatory, , Ph.D. Thesis, RWTH Aachen University, in preparation
  • MikroKopter Air Pressure Sensor As Altitude Meter, , http://wiki.mikrokopter.de/en/heightsensor
  • Hiller, R., (2016) Radio Measurements for Determining the Energy Scale of Cosmic Rays, , Ph.D. Thesis, Karlsruhe Institute of Technology
  • Fano, W.G., Trainotti, V., Dielectric properties of soils (2001) IEEE Ann. Rept. Conf. Electr. Insul. Dielectr. Phenom., 2001, p. 75
  • Abreu, P., Advanced functionality for radio analysis in the offline software framework of the pierre auger observatory (2011) Nucl. Instrum. Meth. A, 635, p. 92. , [arXiv]

Citas:

---------- APA ----------
(2017) . Calibration of the logarithmic-periodic dipole antenna (LPDA) radio stations at the Pierre Auger Observatory using an octocopter. Journal of Instrumentation, 12(10).
http://dx.doi.org/10.1088/1748-0221/12/10/T10005
---------- CHICAGO ----------
Aab, A. "Calibration of the logarithmic-periodic dipole antenna (LPDA) radio stations at the Pierre Auger Observatory using an octocopter" . Journal of Instrumentation 12, no. 10 (2017).
http://dx.doi.org/10.1088/1748-0221/12/10/T10005
---------- MLA ----------
Aab, A. "Calibration of the logarithmic-periodic dipole antenna (LPDA) radio stations at the Pierre Auger Observatory using an octocopter" . Journal of Instrumentation, vol. 12, no. 10, 2017.
http://dx.doi.org/10.1088/1748-0221/12/10/T10005
---------- VANCOUVER ----------
Aab, A. Calibration of the logarithmic-periodic dipole antenna (LPDA) radio stations at the Pierre Auger Observatory using an octocopter. J. Instrum. 2017;12(10).
http://dx.doi.org/10.1088/1748-0221/12/10/T10005