Artículo

Boubeta, F.M.; Contestín García, R.M.; Lorenzo, E.N.; Boechi, L.; Estrin, D.; Sued, M.; Arrar, M. "Lessons learned about steered molecular dynamics simulations and free energy calculations" (2019) Chemical Biology and Drug Design
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The calculation of free energy profiles is central in understanding differential enzymatic activity, for instance, involving chemical reactions that require QM-MM tools, ligand migration, and conformational rearrangements that can be modeled using classical potentials. The use of steered molecular dynamics (sMD) together with the Jarzynski equality is a popular approach in calculating free energy profiles. Here, we first briefly review the application of the Jarzynski equality to sMD simulations, then revisit the so-called stiff-spring approximation and the consequent expectation of Gaussian work distributions and, finally, reiterate the practical utility of the second-order cumulant expansion, as it coincides with the parametric maximum-likelihood estimator in this scenario. We illustrate this procedure using simulations of CO, both in aqueous solution and in a carbon nanotube as a model system for biologically relevant nanoheterogeneous environments. We conclude the use of the second-order cumulant expansion permits the use of faster pulling velocities in sMD simulations, without introducing bias due to large dispersion in the non-equilibrium work distribution. © 2019 John Wiley & Sons A/S

Registro:

Documento: Artículo
Título:Lessons learned about steered molecular dynamics simulations and free energy calculations
Autor:Boubeta, F.M.; Contestín García, R.M.; Lorenzo, E.N.; Boechi, L.; Estrin, D.; Sued, M.; Arrar, M.
Filiación:CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, Universidad de Buenos Aires, Buenos Aires, Argentina
Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:free energy; Jarzynski; maximum likelihood; steered molecular dynamics
Año:2019
DOI: http://dx.doi.org/10.1111/cbdd.13485
Título revista:Chemical Biology and Drug Design
Título revista abreviado:Chem. Biol. Drug Des.
ISSN:17470277
CODEN:CBDDA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17470277_v_n_p_Boubeta

Referencias:

  • Arrar, M., Boubeta, F.M., Szretter, M.E., Sued, M., Boechi, L., Rodriguez, D., On the accurate estimation of free energies using the Jarzynski equality (2018) The Journal of Computational Chemistry, 40, pp. 688-696. , https://doi.org/10.1002/jcc.25754
  • Bartels, C., Karplus, M., Multidimensional adaptive umbrella sampling: Applications to main chain and side chain peptide conformations (1997) Journal of Computational Chemistry, 18, pp. 1450-1462. , https://doi.org/10.1002/(ISSN)1096-987X
  • Bieza, S.A., Boubeta, F., Feis, A., Smulevich, G., Estrin, D.A., Boechi, L., Bari, S.E., Reactivity of inorganic sulfide species toward a heme protein model (2014) Inorganic Chemistry, 54, pp. 527-533
  • Boechi, L., Martí, M.A., Milani, M., Bolognesi, M., Luque, F.J., Estrin, D.A., Structural determinants of ligand migration in Mycobacterium tuberculosis truncated hemoglobin O (2008) Proteins Structure, Function, and Bioinformatics, 73, pp. 372-379. , https://doi.org/10.1002/prot.22072
  • Boubeta, F.M., Bari, S.E., Estrin, D.A., Boechi, L., Access and binding of H2S to hemeproteins: The case of HbI of Lucina pectinata (2016) The Journal of Physical Chemistry B, 120, pp. 9642-9653. , https://doi.org/10.1021/acs.jpcb.6b06686
  • Bringas, M., Petruk, A.A., Estrin, D.A., Capece, L., Martí, M.A., Tertiary and quaternary structural basis of oxygen affinity in human hemoglobin as revealed by multiscale simulations (2017) Scientific Reports, 7, p. 10926. , https://doi.org/10.1038/s41598-017-11259-0
  • Bucher, D., Walker, R.C., McCammon, J.A., Improved reweighting of accelerated molecular dynamics simulations for free energy calculation (2014) Journal of Chemical Theory and Computation, 10, pp. 2677-2689
  • Case, D.A., Darden, T.A., Cheatham, T.E.I.I.I., Simmerling, C.L., Wang, J., Duke, R.E., Kollman, P., (2010) Amber 11, , San Francisco, University of California
  • Chelli, R., Local sampling in steered Monte Carlo simulations decreases dissipation and enhances free energy estimates via nonequilibrium work theorems (2012) Journal of Chemical Theory and Computation, 8, pp. 4040-4052. , https://doi.org/10.1021/ct300348w
  • Chipot, C., Pohorille, A., (2007) Free energy calculations, , https://doi.org/10.1007/978-3-540-38448-9, New York, NY, Springer
  • Crespo, A., Martí, M.A., Estrin, D.A., Roitberg, A.E., Multiple-steering QM-MM calculation of the free energy profile in chorismate mutase (2005) Journal of the American Chemical Society, 127, pp. 6940-6941. , https://doi.org/10.1021/ja0452830
  • Echeverria, I., Amzel, L.M., Estimation of free-energy differences from computed work distributions: An application of jarzynski?s equality (2012) The Journal of Physical Chemistry B, 116, pp. 10986-10995. , https://doi.org/10.1021/jp300527q
  • Feller, S.E., Zhang, Y., Pastor, R.W., Brooks, B.R., Constant pressure molecular dynamics simulation: The Langevin piston method (1995) The Journal of Chemical Physics, 103, pp. 4613-4621. , https://doi.org/10.1063/1.470648
  • Ferrenberg, A.M., Swendsen, R.H., Optimized monte carlo data analysis (1989) Computers in Physics, 3, pp. 101-104. , https://doi.org/10.1063/1.4822862
  • Gohlke, H., Kiel, C., Case, D.A., Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras–Raf and Ras–RalGDS complexes (2003) Journal of Molecular Biology, 330, pp. 891-913. , https://doi.org/10.1016/S0022-2836(03)00610-7
  • Gore, J., Ritort, F., Bustamante, C., Bias and error in estimates of equilibrium free-energy differences from nonequilibrium measurements (2003) Proceedings of the National Academy of Sciences, 100, pp. 12564-12569. , https://doi.org/10.1073/pnas.1635159100
  • Hu, G., Xu, S., Wang, J., Characterizing the free-energy landscape of MDM2 protein–ligand interactions by steered molecular dynamics simulations (2015) Chemical Biology & Drug Design, 86, pp. 1351-1359. , https://doi.org/10.1111/cbdd.12598
  • Hummer, G., Fast-growth thermodynamic integration: Error and efficiency analysis (2001) The Journal of Chemical Physics, 114, pp. 7330-7337. , https://doi.org/10.1063/1.1363668
  • Hummer, G., (2007) Free energy calculations, pp. 171-198. , New York, NY, Springer
  • Humphrey, W., Dalke, A., Schulten, K., VMD – Visual molecular dynamics (1996) Journal of Molecular Graphics, 14, pp. 33-38. , https://doi.org/10.1016/0263-7855(96)00018-5
  • Isralewitz, B., Baudry, J., Gullingsrud, J., Kosztin, D., Schulten, K., Steered molecular dynamics investigations of protein function (2001) Journal of Molecular Graphics and Modelling, 19, pp. 13-25. , https://doi.org/10.1016/S1093-3263(00)00133-9
  • Isralewitz, B., Gao, M., Schulten, K., Steered molecular dynamics and mechanical functions of proteins (2001) Current Opinion in Structural Biology, 11, pp. 224-230. , https://doi.org/10.1016/S0959-440X(00)00194-9
  • Jarzynski, C., Nonequilibrium equality for free energy differences (1997) Physical Review Letters, 78, pp. 2690-2693. , https://doi.org/10.1103/PhysRevLett.78.2690
  • Jarzynski, C., Rare events and the convergence of exponentially averaged work values (2006) Physical Review E, 73, p. 046105. , https://doi.org/10.1103/PhysRevE.73.046105
  • Jarzynski, C., Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale (2011) Annual Review of Condensed Matter Physics, 2, pp. 329-351. , https://doi.org/10.1146/annurev-conmatphys-062910-140506
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) The Journal of Chemical Physics, 79, pp. 926-935. , https://doi.org/10.1063/1.445869
  • Kumar, S., Rosenberg, J.M., Bouzida, D., Swendsen, R.H., Kollman, P.A., The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method (1992) Journal of Computational Chemistry, 13, pp. 1011-1021. , https://doi.org/10.1002/(ISSN)1096-987X
  • Marsico, F., Burastero, O., Defelipe, L.A., Lopez, E.D., Arrar, M., Turjanski, A.G., Marti, M.A., Multiscale approach to the activation and phosphotransfer mechanism of CpxA histidine kinase reveals a tight coupling between conformational and chemical steps (2018) Biochemical and Biophysical Research Communications, 498, pp. 305-312. , https://doi.org/10.1016/j.bbrc.2017.09.039
  • Martyna, G.J., Tobias, D.J., Klein, M.L., Constant pressure molecular dynamics algorithms (1994) The Journal of Chemical Physics, 101, pp. 4177-4189. , https://doi.org/10.1063/1.467468
  • Nicolini, P., Frezzato, D., Chelli, R., Exploiting configurational freezing in nonequilibrium Monte Carlo simulations (2011) Journal of Chemical Theory and Computation, 7, pp. 582-593. , https://doi.org/10.1021/ct100568n
  • Ozer, G., Valeev, E.F., Quirk, S., Hernandez, R., Adaptive steered molecular dynamics of the long-distance unfolding of neuropeptide Y (2010) Journal of Chemical Theory and Computation, 6, pp. 3026-3038. , https://doi.org/10.1021/ct100320g
  • Park, S., Schulten, K., Calculating potentials of mean force from steered molecular dynamics simulations (2004) Journal of Chemical Physics, 120, pp. 5946-5961. , https://doi.org/10.1063/1.1651473
  • Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Schulten, K., Scalable molecular dynamics with NAMD (2005) Journal of Computational Chemistry, 26, pp. 1781-1802. , https://doi.org/10.1002/(ISSN)1096-987X
  • Pohorille, A., Jarzynski, C., Chipot, C., Good practices in free-energy calculations (2010) Journal of Physical Chemistry B, 114, pp. 10235-10253. , https://doi.org/10.1021/jp102971x
  • Ramírez, C.L., Zeida, A., Jara, G.E., Roitberg, A.E., Martí, M.A., Improving Efficiency in SMD simulations through a hybrid differential relaxation algorithm (2014) Journal of Chemical Theory and Computation, 10, pp. 4609-4617. , https://doi.org/10.1021/ct500672d
  • Ryckaert, J., Ciccotti, G., ScienceDirect—choose organization (1977) Journal of Computational Physics, 23, pp. 327-341. , https://doi.org/10.1016/0021-9991(77)90098-5
  • Schmiedl, T., Seifert, U., Optimal finite-time processes in stochastic thermodynamics (2007) Physical Review Letters, 98, p. 108301. , https://doi.org/10.1103/PhysRevLett.98.108301
  • Selvam, B., Wereszczynski, J., Tikhonova, I.G., Comparison of dynamics of extracellular accesses to the β1 and β2 adrenoceptors binding sites uncovers the potential of kinetic basis of antagonist selectivity (2012) Chemical Biology & Drug Design, 80, pp. 215-226. , https://doi.org/10.1111/j.1747-0285.2012.01390.x
  • Shirts, M.R., Chodera, J.D., Statistically optimal analysis of samples from multiple equilibrium states (2008) The Journal of Chemical Physics, 129, p. 124105. , https://doi.org/10.1063/1.2978177
  • Shirts, M.R., Mobley, D.L., Brown, S.P., Free-energy calculations in structure-based drug design (2010) Drug Design: Structure-and Ligand-Based Approaches, pp. 61-86. , https://doi.org/10.1017/CBO9780511730412
  • Vaikuntanathan, S., Jarzynski, C., Escorted free energy simulations: Improving convergence by reducing dissipation (2008) Physical Review Letters, 100, p. 190601. , https://doi.org/10.1103/PhysRevLett.100.190601
  • Wu, D., Kofke, D.A., Phase-space overlap measures: I: Fail-safe bias detection in free energies calculated by molecular simulation (2005) The Journal of Chemical Physics, 123, p. 054103. , https://doi.org/10.1063/1.1992483
  • Wu, D., Kofke, D.A., Phase-space overlap measures. II. Design and implementation of staging methods for free-energy calculations (2005) The Journal of Chemical Physics, 123, p. 084109. , https://doi.org/10.1063/1.2011391
  • Xiong, H., Crespo, A., Marti, M., Estrin, D., Roitberg, A.E., Free energy calculations with non-equilibrium methods: Applications of the Jarzynski relationship (2006) Theoretical Chemistry Accounts, 116, pp. 338-346. , https://doi.org/10.1007/s00214-005-0072-2
  • Ytreberg, F.M., Zuckerman, D.M., Efficient use of nonequilibrium measurement to estimate free energy differences for molecular systems (2004) Journal of Computational Chemistry, 25, pp. 1749-1759. , https://doi.org/10.1002/(ISSN)1096-987X
  • Yunger Halpern, N., Jarzynski, C., Number of trials required to estimate a free-energy difference, using fluctuation relations (2016) Physical Review E, 93, p. 052144. , https://doi.org/10.1103/PhysRevE.93.052144
  • Zerbetto, M., Piserchia, A., Frezzato, D., Looking for some free energy? (2014) Journal of Computational Chemistry, 35, pp. 1865-1881. , https://doi.org/10.1002/jcc.23701
  • Zuckerman, D.M., Woolf, T.B., (2001) Extrapolative analysis of fast-switching free energy estimates in a molecular system
  • Zuckerman, D.M., Woolf, T.B., Overcoming finite-sampling errors in fast-switching free-energy estimates: Extrapolative analysis of a molecular system (2002) Chemical Physics Letters, 351, pp. 445-453

Citas:

---------- APA ----------
Boubeta, F.M., Contestín García, R.M., Lorenzo, E.N., Boechi, L., Estrin, D., Sued, M. & Arrar, M. (2019) . Lessons learned about steered molecular dynamics simulations and free energy calculations. Chemical Biology and Drug Design.
http://dx.doi.org/10.1111/cbdd.13485
---------- CHICAGO ----------
Boubeta, F.M., Contestín García, R.M., Lorenzo, E.N., Boechi, L., Estrin, D., Sued, M., et al. "Lessons learned about steered molecular dynamics simulations and free energy calculations" . Chemical Biology and Drug Design (2019).
http://dx.doi.org/10.1111/cbdd.13485
---------- MLA ----------
Boubeta, F.M., Contestín García, R.M., Lorenzo, E.N., Boechi, L., Estrin, D., Sued, M., et al. "Lessons learned about steered molecular dynamics simulations and free energy calculations" . Chemical Biology and Drug Design, 2019.
http://dx.doi.org/10.1111/cbdd.13485
---------- VANCOUVER ----------
Boubeta, F.M., Contestín García, R.M., Lorenzo, E.N., Boechi, L., Estrin, D., Sued, M., et al. Lessons learned about steered molecular dynamics simulations and free energy calculations. Chem. Biol. Drug Des. 2019.
http://dx.doi.org/10.1111/cbdd.13485