Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Dengue virus (DENV) is the etiological agent of the most important human viral infection transmitted by mosquitoes in the world. In spite of the serious health threat that dengue represents, at present there are no vaccine or antiviral agents available and treatment of patients consists of supportive therapy. This review will focus on the process of DENV entry into the host cell as a potential target for antiviral therapy. The recent advances in the knowledge of viral and cellular molecules and mechanisms involved in binding, internalization and trafficking of DENV into the host cell until virion uncoating are discussed, together with an overview of the strategies and compounds evaluated for development of antiviral agents targeted to DENV entry. © 2015 Future Medicine Ltd.

Registro:

Documento: Artículo
Título:Dengue virus entry and trafficking: Perspectives as antiviral target for prevention and therapy
Autor:Castilla, V.; Piccini, L.E.; Damonte, E.B.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Piso 4, Buenos Aires, 1428, Argentina
Palabras clave:antiviral agents; dengue virus; entry inhibitors; Flavivirus; internalization; receptors; viral binding; viral entry; virus trafficking; antivirus agent; carbohydrate binding protein; monoclonal antibody; peptide derivative; polypeptide antibiotic agent; polysaccharide sulfate; tannin derivative; antiviral activity; controlled clinical trial (topic); dengue; Dengue virus; Dengue virus 1; Dengue virus 2; endocytosis; human; internalization; intracellular transport; mosquito; nonhuman; priority journal; randomized controlled trial (topic); Review; virion; virus attachment; virus cell interaction; virus entry; virus transmission; virus uncoating; Dengue virus; Flavivirus
Año:2015
Volumen:10
Número:5
Página de inicio:625
Página de fin:645
DOI: http://dx.doi.org/10.2217/fvl.15.35
Título revista:Future Virology
Título revista abreviado:Future Virol.
ISSN:17460794
CAS:polysaccharide sulfate, 79933-28-1
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17460794_v10_n5_p625_Castilla

Referencias:

  • Guzmán, M.G., Halstead, S.B., Artsob, H., Dengue: A continuing global threat (2010) Nat. Rev. Microbiol, 8 (12), pp. S7-S16. , Suppl
  • Bhatt, S., Gething, P.W., Brady, O.J., The global distribution and burden of dengue (2013) Nature, 496 (7446), pp. 504-507
  • Halstead, S.B., Dengue (2007) Lancet, 370 (9599), pp. 1644-1652
  • Rothman, A.L., Dengue: Defining protective versus pathologic immunity (2004) J. Clin. Invest, 113 (7), pp. 946-951
  • Flipse, J., Wilschut, J., Smit, J.M., Molecular mechanisms involved in antibody-dependent enhancement of dengue virus infection in humans (2013) Traffic, 14 (1), pp. 25-35
  • Yauch, L.E., Shresta, S., Dengue vaccines (2014) Adv. Virus Res, 88, pp. 315-372
  • Noble, C.G., Chen, Y.-L., Dong, H., Strategies for development of dengue virus inhibitors (2010) Antiviral Res, 85 (3), pp. 450-462
  • Sampath, A., Padmanabhan, R., Molecular targets for flavivirus drug discovery (2009) Antiviral Res, 81 (1), pp. 6-15
  • Haggani, A.A., Tilton, J.C., Entry inhibitors and their use in the treatment of HIV-1 infection (2013) Antiviral Res, 98 (2), pp. 158-170
  • Spillmann, D., Heparan sulfate: Anchor for viral intruders? (2001) Biochimie, 83 (8), pp. 811-817
  • Zhu, W., Li, J., Liang, G., How does cellular heparan sulfate function in viral parhogenicity? (2011) Biomed. Environ. Sci, 24 (1), pp. 81-87
  • Chen, Y., Maguire, T., Hileman, R.E., Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate (1997) Nat. Med, 3 (8), pp. 866-871
  • Hung, S.L., Lee, P.L., Chen, H.W., Chen, L.K., Kao, C.L., King, C.C., Analysis of the steps involved in dengue virus entry into host cells (1999) Virology, 257 (1), pp. 156-167
  • Germi, R., Crance, J.M., Garin, D., Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus (2002) Virology, 292 (1), pp. 162-168
  • Martínez-Barragán, J.J., Del Angel, R.M., Identification of a putative coreceptor on Vero cells that participates in dengue 4 virus infection (2001) J. Virol, 75 (17), pp. 7818-7827
  • Hilgard, P., Stockert, R., Heparan sulfate proteoglycans initiate dengue virus infection of hepatocytes (2000) Hepatology, 32 (5), pp. 1069-1077
  • Dalrymple, N., MacKow, E.R., Productive dengue virus infection of human endothelial cells is directed by heparin sulfate-containing proteoglycan receptors (2011) J. Virol, 85 (18), pp. 9478-9485
  • Okamoto, K., Kinoshita, H., Parquet, M.C., Dengue virus strain DEN2 16681 utilizes a specific glycochain of syndecan-2 proteoglycan as a receptor (2012) J. Gen. Virol, 93 (4), pp. 761-770
  • Lin, Y.L., Lei, H.Y., Lin, Y.S., Yeh, T.M., Chen, S.H., Liu, H.S., Heparin inhibits dengue-2 virus infection of five human liver cell lines (2002) Antiviral Res, 56 (1), pp. 93-96
  • Talarico, L.B., Damonte, E.B., Interference in dengue virus adsorption and uncoating by carrageenans (2007) Virology, 363 (2), pp. 473-485
  • Kato, D., Era, S., Watanabe, I., Antiviral activity of chondroitin sulphate e targeting dengue virus envelope protein (2010) Antiviral Res, 88 (2), pp. 236-243
  • Vervaeke, P., Alen, M., Noppen, S., Schols, D., Oreste, P., Liekens, S., Sulfated Escherichia coli K5 polysaccharide derivatives inhibit dengue virus infection of human microvascular endothelial cells by interacting with the viral envelope protein e domain II (2013) PLoS ONE, 8 (8), p. e74035
  • Watterson, D., Kobe, B., Young, P.R., Residues in domain III of the dengue virus envelope glycoprotein involved in cell-surface glycosaminoglycan binding (2012) J. Gen. Virol, 93 (1), pp. 72-82
  • Roehrig, J.T., Butrapet, S., Liss, N.M., Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion (2013) Virology, 441 (2), pp. 114-125
  • Crill, W.D., Roehrig, J.T., Monoclonal antibodies that bind to domain III of dengue virus e glycoprotein are the most efficient blockers of virus adsorption to Vero cells (2001) J. Virol, 75 (16), pp. 7769-7773
  • Ichiyama, K., Gopala Reddy, S.B., Zhang, L.F., Sulfated polysaccharide, curdlan sulfate, efficiently prevents entry/fusion and restricts antibody-dependent enhancement of dengue virus infection in vitro: A possible candidate for clinical application (2013) PLoS Negl. Trop. Dis, 7 (4), p. e2188
  • Marovich, M., Grouard-Vogel, G., Louder, M., Human dendritic cells as targets of human infection (2001) J. Investig. Dermatol. Symp. Proc, 6 (3), pp. 219-224
  • Geijtenbeek, T.B., Van Kooyk, Y., Pathogens target DC-SIGN to influence their fate DC-SIGN functions as a pathogen receptor with broad specificity (2003) APMIS, 111 (7-8), pp. 698-714
  • Navarro-Sanchez, E., Altmeyer, R., Amara, A., Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses (2003) EMBO Rep, 4 (7), pp. 723-728
  • Tassaneetrithep, B., Burgess, T.H., Granelli-Piperno, A., DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells (2003) J. Exp. Med, 197 (7), pp. 823-829
  • Lozach, P.-Y., Burleigh, L., Staropoli, I., Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DCSIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals (2005) J. Biol. Chem, 280 (25), pp. 23698-23708
  • Pokidysheva, E., Zhang, Y., Battisti, A.J., Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN (2006) Cell, 124 (3), pp. 485-493
  • Miller, J.L., Dewet, B.J., Martinez-Pomares, L., The mannose receptor mediates dengue virus infection of macrophages (2008) PLoS Pathog, 4 (2), p. e17
  • Chen, Y.C., Wang, S.Y., King, C.C., Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent mechanism (1999) J. Virol, 73 (4), pp. 2650-2657
  • Reyes-Del Valle, J., Chavez-Salinas, S., Medina, F., Del Angel, R.M., Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells (2005) J. Virol, 79 (8), pp. 4557-4567
  • Meertens, L., Carnec, X., Perera Lecoin, M., The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry (2012) Cell Host Microbe, 12 (4), pp. 544-557
  • Jindadamrongwech, S., Thepparit, C., Smith, D.R., Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2 (2004) Arch. Virol, 149 (5), pp. 915-927
  • Cabrera-Hernández, A., Thepparit, C., Suksanpaisan, L., Smith, D.R., Dengue virus entry into liver (HepG2) cells is independent of hsp90 and hsp70 (2007) J. Med. Virol, 79 (4), pp. 368-392
  • Alhoot, M.A., Wang, S.M., Sekaran, S.D., RNA mediated inhibition of dengue virus multiplication and entry in HepG2 cells (2012) PLoS ONE, 7 (3), p. e34060
  • Thepparit, C., Smith, D.R., Serotype-specific entry of dengue virus into liver cells: Identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor (2004) J. Virol, 78 (22), pp. 12647-12656
  • Tio, P.H., Jong, W.W., Cardosa, M.J., Two dimensional VOPBA reveals laminin receptor (LAMRI) interaction with dengue virus serotypes 1, 2 and 3 (2005) Virol. J., 2, p. 25
  • Wei, H.Y., Jiang, L.F., Fang, D.Y., Guo, H.Y., Dengue virus type 2 infects human endothelial cells through binding of the viral envelope glycoprotein to cell surface polypeptides (2003) J. Gen. Virol, 84 (11), pp. 3095-3098
  • Yang, J., Zou, L., Hu, Z., Identification and characterization of a 43 kDa actin protein involved in the DENV-2 binding and infection of ECV304 cells (2013) Microbes Infect, 15 (4), pp. 310-318
  • Aoki, C., Hidari, K.I., Itonori, S., Identification and characterization of carbohydrate molecules in mammalian cells recognized by dengue virus type 2 (2006) J. Biochem, 139 (3), pp. 607-614
  • Wichit, S., Jittmittraphap, A., Hidari, K.I.P.J., Dengue virus type 2 recognizes the carbohydrate moiety of neutral glycosphingolipids in mammalian and mosquito cells (2011) Microbiol. Immunol, 55 (2), pp. 135-140
  • Talarico, L.B., Pujol, C.A., Zibetti, R.G., The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell (2005) Antiviral Res, 66 (2-3), pp. 103-110
  • Thaisomboonsuk, B.K., Clayson, E.T., Pantuwatana, S., Vaughn, D.W., Endy, T.P., Characterization of dengue-2 virus binding to surfaces of mammalian and insect cells (2005) Am. J. Trop. Med. Hyg, 72 (4), pp. 375-383
  • Sinnis, P., Coppi, A., Toida, T., Mosquito heparan sulfate and its potential role in malaria infection and transmission (2007) J. Biol. Chem, 282 (35), pp. 25376-25384
  • Talarico, L.B., Noseda, M.D., Ducatti, D.R.B., Duarte, M.E.R., Damonte, E.B., Differential inhibition of dengue virus infection in mammalian and mosquito cells by iotacarrageenan (2011) J. Gen. Virol, 92 (6), pp. 1332-1342
  • Hung, J.J., Hsieh, M.T., Young, M.J., Kao, C.L., King, C.C., Chang, W., An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotypespecific binding to mosquito but not mammalian cells (2004) J. Virol, 78 (1), pp. 378-388
  • Yazi Mendoza, M., Salas-Benito, J.S., Lanz-Mendoza, H., Hernández-Martínez, S., Del Angel, R.M., A putative receptor for dengue virus in mosquito tissues: Localization of a 45-kDa glycoprotein (2002) Am. J. Trop. Med. Hyg, 67 (1), pp. 76-84
  • Mercado-Curiel, R.F., Esquinca-Avilés, H.A., Tovar, R., Díaz-Badillo, A., Camacho-Nuez, M., Muñoz, M.L., The four serotypes of dengue recognize the same putative receptors in Aedes aegypti midgut and Ae. Albopictus cells (2006) BMC Microbiol, 6, p. 85
  • Cao-Lorneau, V.M., Dengue viruses binding proteins from Aedes aegypti and Aedes polynesiensis salivary glands (2009) Virol. J., 6, p. 35
  • Sakoonwatanyoo, P., Boonsanay, V., Smith, D.R., Growth and production of the dengue virus in C6/36 cells and identification of a laminin-binding protein as a candidate serotype 3 and 4 receptor protein (2006) Intervirology, 49 (3), pp. 161-172
  • Salas-Benito, J., Reyes-Del Valle, J., Salas-Benito, M., Ceballos-Olvera, I., Mosso, C., Del Angel, R.M., Evidence that the 45-kD glycoprotein, part of a putative dengue virus receptor complex in the mosquito cell line C6/36, is a heat-shock related protein (2007) Am. J. Trop. Med. Hyg, 77 (2), pp. 283-290
  • Chee, H.-Y., Abubakar, S., Identification of a 48 kDa tubulin or tubulin-like C6/36 mosquito cells protein that binds dengue virus 2 using mass spectrometry (2004) Biochem. Biophys. Res. Commun, 320 (1), pp. 11-17
  • Kuadkitkan, A., Wikan, N., Fongsaran, C., Smith, D.R., Identification and characterization of prohibitin as a receptor protein mediating DENV-2 entry into insect cells (2010) Virology, 406 (1), pp. 149-161
  • Paingankar, M.S., Gokhale, M.D., Deobagkar, D.N., Dengue-2-virus-interacting polypeptides involved in mosquito cell infection (2010) Arch. Virol, 155 (9), pp. 1453-1461
  • Hase, T., Summers, P.L., Eckels, K.H., Flavivirus entry into cultured mosquito cells and human peripheral blood monocytes (1989) Arch. Virol, 104 (1-2), pp. 129-143
  • Lim, H.Y., Ng, M.L., A different mode of entry by dengue-2 neutralization escape mutant virus (1999) Arch. Virol, 144 (5), pp. 989-995
  • Vancini, R., Kramer, L.D., Ribeiro, M., Hernandez, R., Brown, D., Flavivirus infection from mosquitoes in vitro reveals cell entry at the plasma membrane (2013) Virology, 435 (2), pp. 406-414
  • Krishnan, M.N., Sukumaran, B., Pal, U., Rab 5 is required for the cellular entry of dengue virus and West Nile viruses (2007) J. Virol, 81 (9), pp. 4881-4885
  • Acosta, E.G., Castilla, V., Damonte, E.B., Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis (2008) J. Gen. Virol, 89 (2), pp. 474-484
  • Mosso, C., Galván-Mendoza, I.J., Ludert, J.E., Del Angel, R.M., Endocytic pathway followed by dengue virus to infect the mosquito cell line C6/36 H.T (2008) Virology, 378 (1), pp. 193-199
  • Acosta, E.G., Castilla, V., Damonte, E.B., Infectious dengue-1 virus entry into mosquito C6/36 cells (2011) Virus Res, 160 (1-2), pp. 163-179
  • Hu, H.-P., Hsieh, S.C., King, C.-C., Wang, W.-K., Characterization of retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope glycoproteins of four serotypes of dengue viruses (2007) Virology, 368 (2), pp. 376-387
  • Van Der Schaar, H.M., Rust, M.J., Waarts, B.-L., Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking (2007) J. Virol, 81 (21), pp. 12019-12028
  • Kuhn, R.J., Zhang, W., Rossmann, M.G., Structure of dengue virus: Implications for flavivirus organization, maturation and fusion (2002) Cell, 108 (5), pp. 717-725
  • Modis, Y., Ogata, S., Clements, D., Harrison, S.C., Structure of the dengue virus envelope protein after membrane fusion (2004) Nature, 427 (6972), pp. 313-319
  • Zhang, Y., Zhang, W., Ogata, S., Conformational changes of the flavivirus e glycoprotein (2004) Structure, 12, pp. 1607-1618
  • Stiasny, K., Heinz, F.X., Flavivirus membrane fusion (2006) J. Gen. Virol, 87 (10), pp. 2755-2766
  • Mercer, J., Schelhaas, M., Helenius, A., Virus entry by endocytosis (2010) Annu. Rev. Biochem, 79, pp. 803-833
  • Schelhaas, M., Come in and take your coat off - How host cells provide endocytosis for virus entry (2010) Cell. Microbiol, 12 (10), pp. 1378-1388
  • Acosta, E.G., Castilla, V., Damonte, E.B., Alternative infectious entry pathways for dengue virus serotypes into mammalian cells (2009) Cell. Microbiol, 11 (10), pp. 1533-1549
  • Peng, T., Wang, J.L., Chen, W., Entry of dengue virus serotype 2 into ECV304 cells depends on clathrin-dependent endocytosis, but not on caveolae-dependent endocytosis (2009) Can. J. Microbiol, 55 (2), pp. 139-145
  • Alhoot, M.A., Wang, S.M., Sekaran, S.D., Inhibition of dengue virus entry and multiplication into monocytes using RNA interference (2011) PLoS Negl. Trop. Dis, 5 (11), p. e1410
  • Van Der Schaar, H.M., Rust, M.J., Chen, C., Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells (2008) PLoS Pathog, 4 (12), p. e1000244
  • Ang, F., Wong, A.P.Y., Ng, M.M.-L., Chu, J.J.H., Small interference RNA profiling reveals the essential role of human membrane trafficking genes in mediating the infectious entry of dengue virus (2010) Virol. J., 7 (24)
  • Mayor, S., Pagano, R.E., Pathways of clathrinindependent endocytosis (2007) Nat. Rev. Mol. Cell Biol, 8 (8), pp. 603-612
  • Sanchez, V., Gimenez, S., Tomlinson, B., Innate and adaptive cellular immunity in flavivirus-naive human recipients of a live-attenuated dengue serotype 3 vaccine produced in Vero cells (VDV3 (2006) Vaccine, 24 (23), pp. 4914-4926
  • Lee, H.C., Yen, Y.T., Chen, W.Y., Wu-Hsieh, B.A., Wu, S.C., Dengue type 4 live-attenuated vaccine viruses passaged in Vero cells affect genetic stability and dengue-induced hemorrhaging in mice (2011) PLoS ONE, 6 (10), p. e25800
  • Huang, C.Y., Kinney, R.M., Livengood, J.A., Genetic and phenotypic characterization of manufacturing seeds for a tetravalent dengue vaccine (DENVax) (2013) PLoS Negl. Trop. Dis, 7 (5), p. e2243
  • Suksanpaisan, L., Susantad, T., Smith, D.R., Characterization of dengue virus entry into HepG2 cells (2009) J. Biomed. Sci, 16, p. 17
  • Zhu, Y.-Z., Xu, Q.-Q., Wu, D.-G., Japanese encephalitis virus enters rat neuroblastoma cells via a pH-dependent, dynamin and caveola-mediated endocytosis pathway (2013) J. Virol, 86 (24), pp. 13407-13422
  • Kalia, M., Khasa, R., Sharma, M., Nain, M., Vrati, S., Japanese encephalitis virus infects neuronal cells through a clathrin-independent endocytic mechanism (2013) J. Virol, 87 (1), pp. 148-162
  • Carro, A.C., Damonte, E.B., Requirement of cholesterol in the viral envelope for dengue virus infection (2013) Virus Res, 174 (1-2), pp. 78-87
  • Lee, C.J., Lin, H.R., Liao, C.L., Lin, Y.L., Cholesterol effectively blocks entry of flavivirus (2008) J. Virol, 82 (13), pp. 6470-6480
  • Umashankar, M., Sánchez-San Martín, C., Liao, M., Differential cholesterol binding by class II fusion proteins determines membrane fusion properties (2008) J. Virol, 82 (18), pp. 9245-9253
  • Rodman, J.S., Wansinger-Ness, A., Rab GTPases coordinate endocytosis (2000) J. Cell Sci, 113 (2), pp. 183-192
  • Stein, M.P., Dong, J., Wandinger-Ness, A., Rab proteins and endocytic trafficking: Potential targets for therapeuticas intervention (2003) Adv. Drug Deliv. Rev, 55 (11), pp. 1421-1437
  • Lozach, P.Y., Huotari, J., Helenius, A., Latepenetrating viruses (2011) Curr. Opin. Virol, 1 (1), pp. 35-43
  • Zaitseva, E., Yang, S.T., Melikov, K., Pourmal, S., Chernomordik, L.V., Dengue virus ensures its fusion in late endosomes using compartmentspecific lipids (2010) PLoS Pathog, 6 (10), p. e1001131
  • Acosta, E.G., Castilla, V., Damonte, E.B., Differential requirements in endocytic trafficking for penetration of dengue virus (2012) PLoS ONE, 7 (9), p. e44835
  • Shrivastava, N., Sripada, S., Kaur, J., Shah, P.S., Cecilia, D., Insights into the internalization and retrograde trafficking of dengue virus in BHK-21 cells (2011) PLoS ONE, 6 (10), p. e25229
  • Lee, Y.R., Lei, H.Y., Liu, M.T., Autophagic machinery activated by dengue virus enhances virus replication.Virology (2008) Autophagic Machinery Activated by Dengue Virus Enhances Virus Replication.Virology 374(2), 240-248 (2008, 374 (2), pp. 240-248
  • Panyasrivanit, M., Khakpoor, A., Wikan, N., Smith, D.R., Co-localization of constituents of the dengue virus translation and replication machinery with amphisomes (2009) J. Gen. Virol, 90, pp. 448-456. , Pt2
  • Heaton, N.S., Randall, G., Dengue virusinduced autophagy regulates lipid metabolism (2010) Cell Host Microbe, 8 (5), pp. 422-432
  • Khakpoor, A., Panyasrivanit, M., Wikan, N., Smith, D.R., A role for autophagolysosomes in dengue virus 3 production in HepG2 cells (2009) J. Gen. Virol, 90, pp. 1093-1103. , Pt5
  • Heaton, N.S., Randall, G., Dengue virus and autophagy (2011) Viruses, 3 (8), pp. 1332-1341
  • Lee, Y.R., Hu, H.Y., Kuo, S.H., Dengue virus infection induces autophagy: An in vivo study (2013) J. Biomed. Sci, 20 (65)
  • Fang, Y.T., Wan, S.W., Lu, Y.T., Autophagy facilitates antibody-enhanced dengue virus infection in human pre-basophil/mast cells (2014) PLoS ONE, 9 (10), p. e110655
  • Ghosh Roy, S., Sadigh, B., Datan, E., Lockshin, R.A., Zakeri, Z., Regulation of cell survival and death during Flavivirus infections (2014) World J. Biol. Chem, 5 (2), pp. 93-105
  • De La Guardia, C., Lleonart, R., Progress in the identification of dengue virus entry/fusion inhibitors 2014 (2014) Biomed. Res. Int, , 825039
  • Perera, R., Khaliq, M., Kuhn, R.J., Closing the door on flaviviruses: Entry as a target for antiviral drug design (2008) Antiviral Res, 80 (1), pp. 11-22
  • Kampmann, T., Yennamalli, R., Campbell, P., In silico screening of small molecule libraries using the dengue virus envelope e protein has identified compounds with antiviral activity against multiple flaviviruses (2009) Antiviral Res, 84 (3), pp. 234-241
  • Chin, J.F.L., Chu, J.J.H., Ng, M.L., The envelope glycoprotein domain III of dengue virus serotypes 1 and 2 inhibit virus entry (2007) Microbes Infect, 9 (1), pp. 1-6
  • Alhoot, M.A., Rathinam, A.K., Wang, S.M., Manikam, R., Sekaran, S.D., Inhibition of dengue virus entry into target cells using synthetic antiviral peptides (2013) Int. J. Med. Sci, 10 (6), pp. 719-729
  • Lok, S.M., Kostyuchenko, V., Nybakken, G.E., Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins (2008) Nat. Struct. Mol. Biol, 15 (3), pp. 312-317
  • Shrestha, B., Brien, J.D., Sukupolvi-Petty, S., The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type 1 (2010) PLoS Pathog, 6 (4), p. e1000823
  • Goncalvez, A.P., Engle, R.E., St Claire, M., Purcell, R.H., Lai, C.J., Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention (2007) Proc. Natl Acad. Sci. USA, 104 (22), pp. 9422-9427
  • Alen, M.M., Kaptein, S.J., De Burghgraeve, T., Balzarini, J., Neyts, J., Schols, D., Antiviral activity of carbohydrate-binding agents and the role of DC-SIGN in dengue virus infection (2009) Virology, 387 (1), pp. 67-75
  • Alen, M.M., De Burghgraeve, T., Kaptein, S.J., Balzarini, J., Neyts, J., Schols, D., Broad antiviral activity of carbohydrate-binding agents against the four serotypes of dengue virus in monocyte-derived dendritic cells (2011) PLoS ONE, 6 (6), p. e21658
  • Varga, N., Sutkeviciute, I., Ribeiro-Viana, R., A multivalent inhibitor of the DC-SIGN dependent uptake of HIV-1 and dengue virus (2014) Biomaterials, 35 (13), pp. 4175-4184
  • Obeid, S., Printsevskaya, S.S., Olsufyeva, E.N., Inhibition of hepatitis C virus replication by semi-synthetic derivatives of glycopeptide antibiotics (2011) J. Antimicrob. Chemother, 66 (6), pp. 1287-1294
  • De Burghgraeve, T., Kaptein, S.J., Ayala-Nunez, N.V., An analogue of the antibiotic teicoplanin prevents flavivirus entry in vitro (2012) PLoS ONE, 7 (5), p. e37244
  • Lee, E., Pavy, M., Young, N., Freeman, C., Lobigs, M., Antiviral effect of the heparan sulfate mimetic, PI-88, against dengue and encephalitic Flaviviruses (2006) Antiviral Res, 69 (1), pp. 31-38
  • Pujol, C.A., Estévez, J.M., Carlucci, M.J., Ciancia, M., Cerezo, A.S., Damonte, E.B., Novel DL-galactan hybrids from the red seaweed Gymnogongrus torulosus are potent inhibitors of herpes simplex virus and dengue virus (2002) Antivir. Chem. Chemother, 13 (2), pp. 83-89
  • Talarico, L.B., Duarte, M.E., Zibetti, R.G., Noseda, M.D., Damonte, E.B., An algal-derived DL-galactan hybrid is an efficient preventing agent for in vitro dengue virus infection (2007) Planta Med, 73 (14), pp. 1464-1468
  • Hidari, K.I., Takahashi, N., Arihara, M., Nagaoka, M., Morita, K., Suzuki, T., Structure and anti-dengue virus activity of sulfated polysaccharide from a marine alga (2008) Biochem. Biophys. Res. Commun, 376 (1), pp. 91-95
  • Pujol, C.A., Ray, S., Ray, B., Damonte, E.B., Antiviral activity against dengue virus of diverse classes of algal sulfated polysaccharides (2012) Int. J. Biol. Macromol, 51 (4), pp. 412-416
  • Acosta, E.G., Piccini, L.E., Talarico, L.B., Castilla, V., Damonte, E.B., Changes in antiviral susceptibility to entry inhibitors and endocytic uptake of dengue-2 virus serially passaged in Vero or C6/36 cells (2014) Virus Res, 184, pp. 39-43
  • Lin, L.T., Chen, T.Y., Lin, S.C., Broadspectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry (2013) BMC Microbiol, 13 (187)
  • Costin, J.M., Jenwitheesuk, E., Lok, S.M., Structural optimization and de novo design of dengue virus entry inhibitory peptides (2010) PLoS Negl. Trop. Dis, 4 (6), p. e721
  • Kaptein, S.J., De Burghgraeve, T., Froeyen, M., A derivate of the antibiotic doxorubicin is a selective inhibitor of dengue and yellow fever virus replication in vitro (2010) Antimicrob. Agents Chemother, 54 (12), pp. 5269-5280
  • Ayala-Nuñez, N.V., Jarupathirun, P., Kaptein, S.J., Neyts, J., Smit, J.M., Antibody-dependent enhancement of dengue virus infection is inhibited by SA-17, a doxorubicin derivative (2013) Antiviral Res, 100 (1), pp. 238-245
  • Schmidt, A.G., Yang, P.L., Harrison, S.C., Peptide inhibitors of dengue-virus entry target a late-stage fusion intermediate (2010) PLoS Pathog, 6 (4), p. e1000851
  • Schmidt, A.G., Yang, P.L., Harrison, S.C., Peptide inhibitors of Flavivirus entry derived from the e protein stem (2010) J. Virol, 84 (24), pp. 12549-12554
  • Hrobowski, Y.M., Garry, R.F., Michael, S.F., Peptide inhibitors of dengue virus and West Nile virus infectivity (2005) Virol. J., 2, p. 49
  • Lok, S.M., Costin, J.M., Hrobowski, Y.M., Release of dengue virus genome induced by a peptide inhibitor (2012) PLoS ONE, 7 (11), p. e50995
  • Schmidt, A.G., Lee, K., Yang, P.L., Harrison, S.C., Small-molecule inhibitors of dengue-virus entry (2012) PLoS Pathog, 8 (4), p. e1002627
  • Poh, M.K., Yip, A., Zhang, S., A small molecule fusion inhibitor of dengue virus (2009) Antiviral Res, 84 (3), pp. 260-266
  • Yang, J.M., Chen, Y.F., Tu, Y.Y., Yen, K.R., Yang, Y.L., Combinatorial computational approaches to identify tetracycline derivatives as Flavivirus inhibitors (2007) PLoS ONE, 2 (5), p. e428
  • Rothwell, C., Lebreton, A., Young Ng, C., Cholesterol biosynthesis modulation regulates dengue viral replication (2009) Virology, 389 (1-2), pp. 8-19
  • Martínez-Gutierrez, M., Castellanos, J.E., Gallego-Gómez, J.C., Statins reduce dengue virus production via decreased virion assembly (2011) Intervirology, 54 (4), pp. 202-216
  • Poh, M.K., Shui, G., Xie, X., Shi, P.Y., Wenk, M.R., Gu, F., U18666A, an intra-cellular cholesterol transport inhibitor, inhibits dengue virus entry and replication (2012) Antiviral Res, 93 (1), pp. 191-198
  • Panya, A., Bangphoomi, K., Choowongkomon, K., Yenchitsomanus, P.T., Peptide inhibitors against dengue virus infection (2014) Chem. Biol. Drug des, 84 (2), pp. 148-157
  • Zhou, Z., Khaliq, M., Suk, J.E., Antiviral compounds discovered by virtual screening of small-molecule libraries against dengue virus e protein (2008) ACS Chem. Biol, 3 (12), pp. 765-775
  • Wang, Q.Y., Patel, S.J., Vangrevelinghe, E., A small-molecule dengue virus entry inhibitor (2009) Antimicrob. Agents Chemother, 53 (5), pp. 1823-1831
  • Rees, C.R., Costin, J.M., Fink, R.C., In vitro inhibition of dengue virus entry by p-sulfoxycinnamic acid and structurally related combinatorial chemistries (2008) Antiviral Res, 80 (2), pp. 135-142
  • Tricou, V., Minh, N.N., Van, T.P., A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults (2010) PLoS Negl. Trop. Dis, 4 (8), p. e785
  • Borges, M.C., Castro, L.A., Fonseca, B.A., Chloroquine use improves dengue-related symptoms (2013) Mem. Inst. Oswaldo Cruz, 108 (5), pp. 596-599
  • Nguyen, N.M., Tran, C.N., Phung, L.K., A randomized, double-blind placebo controlled trial of balapiravir, a polymerase inhibitor, in adult dengue patients (2013) J. Infect. Dis, 207 (9), pp. 1442-1450
  • Low, J.G., Sung, C., Wijaya, L., Efficacy and safety of celgosivir in patients with dengue fever (CELADEN): A phase 1b, randomised, double-blind, placebo-controlled, proof-ofconcept trial (2014) Lancet Infect. Dis, 14 (8), pp. 706-715
  • Whitehorn, J., Van Vinh Chau, N., Truong, N.T., Lovastatin for adult patients with dengue: Protocol for a randomised controlled trial (2012) Trials, 13 (203)
  • Krishnan, M.N., Garcia-Blanco, M.A., Targeting host factors to treat West Nile and dengue viral infections (2014) Viruses, 6 (2), pp. 683-708

Citas:

---------- APA ----------
Castilla, V., Piccini, L.E. & Damonte, E.B. (2015) . Dengue virus entry and trafficking: Perspectives as antiviral target for prevention and therapy. Future Virology, 10(5), 625-645.
http://dx.doi.org/10.2217/fvl.15.35
---------- CHICAGO ----------
Castilla, V., Piccini, L.E., Damonte, E.B. "Dengue virus entry and trafficking: Perspectives as antiviral target for prevention and therapy" . Future Virology 10, no. 5 (2015) : 625-645.
http://dx.doi.org/10.2217/fvl.15.35
---------- MLA ----------
Castilla, V., Piccini, L.E., Damonte, E.B. "Dengue virus entry and trafficking: Perspectives as antiviral target for prevention and therapy" . Future Virology, vol. 10, no. 5, 2015, pp. 625-645.
http://dx.doi.org/10.2217/fvl.15.35
---------- VANCOUVER ----------
Castilla, V., Piccini, L.E., Damonte, E.B. Dengue virus entry and trafficking: Perspectives as antiviral target for prevention and therapy. Future Virol. 2015;10(5):625-645.
http://dx.doi.org/10.2217/fvl.15.35