Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Light-by-light scattering (γγ → γγ) is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics. This reaction is accessible at the Large Hadron Collider thanks to the large electromagnetic field strengths generated by ultra-relativistic colliding lead ions. Using 480 μ 1 of lead-lead collision data recorded at a centre-of-mass energy per nucleon pair of 5.02 TeV by the ATLAS detector, here we report evidence for light-by-light scattering. A total of 13 candidate events were observed with an expected background of 2.6 ± 0.7 events. After background subtraction and analysis corrections, the fiducial cross-section of the process Pb + Pb (γγ) → Pb (∗) + Pb (∗) γγ ,for photon transverse energy E T > 3GeV, photon absolute pseudorapidity |η| <2.4, diphoton invariant mass greater than 6GeV, diphoton transverse momentum lower than 2GeV and diphoton acoplanarity below 0.01, is measured to be 70 ± 24 (stat.) ±17 (syst.) nb, which is in agreement with the standard model predictions. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Registro:

Documento: Artículo
Título:Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC
Autor:Aaboud, M. et al.
Este artículo contiene 2847 autores, consultelos en el artículo en formato pdf.
Filiación: Este artículo contiene 2847 autores con sus filiaciones, consultelas en el artículo en formato pdf.
Año:2017
Volumen:13
Número:9
Página de inicio:852
Página de fin:858
DOI: http://dx.doi.org/10.1038/nphys4208
Título revista:Nature Physics
Título revista abreviado:Nat. Phys.
ISSN:17452473
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17452473_v13_n9_p852_Aaboud

Referencias:

  • Heisenberg, W., Euler, H., Folgerungen aus der Diracschen Theorie des Positrons (1936) Z. Phys., 98, pp. 714-732
  • King, B., Heinzl, T., Measuring vacuum polarisation with high power lasers (2016) High Power Laser Sci. Eng., 4, p. e5
  • Hanneke, D., Fogwell, S., Gabrielse, G., New measurement of the electron magnetic moment and the fine structure constant (2008) Phys. Rev. Lett., 100, p. 120801
  • Bennett, G.W., (Muon g-2 Collaboration) Final report of the muon E821 anomalous magnetic moment measurement at BNL (2006) Phys. Rev. D, 73, p. 072003
  • Laporta, S., Remiddi, E., The analytical value of the electron light-light graphs contribution to the muon (g +2) in QED (1993) Phys. Lett. B, 301, pp. 440-446
  • Wilson, R.R., Scattering of 1.33MeV gamma-rays by an electric field (1953) Phys. Rev., 90, pp. 720-721
  • Jarlskog, G., Measurement of Delbrück scattering and observation of photon splitting at high energies (1973) Phys. Rev. D, 8, pp. 3813-3823
  • Schumacher, M., Delbrück scattering of 2.75-MeV photons by lead (1975) Phys. Lett. B, 59, pp. 134-136
  • Akhmadaliev, S.Z., Delbrück scattering at energies of 140-450MeV (1998) Phys. Rev. C, 58, pp. 2844-2850
  • Akhmadaliev, S.Z., Experimental investigation of high-energy photon splitting in atomic fields (2002) Phys. Rev. Lett., 89, p. 061802
  • Burke, D.L., Positron production in multi-photon light by light scattering (1997) Phys. Rev. Lett., 79, pp. 1626-1629
  • Bula, C., Observation of nonlinear effects in Compton scattering (1996) Phys. Rev. Lett., 76, pp. 3116-3119
  • Bertulani, C.A., Baur, G., Electromagnetic processes in relativistic heavy ion collisions (1988) Phys. Rep., 163, pp. 299-408
  • Natale, A.A., Roldao, C.G., Carneiro, J.P.V., Two photon final states in peripheral heavy ion collisions (2002) Phys. Rev. C, 65, p. 014902
  • Engül, M.Y., Electromagnetic heavy-lepton pair production in relativistic heavy-ion collisions (2016) Eur. Phys. J. C, 76, p. 428
  • Schwinger, J.S., On gauge invariance and vacuum polarization (1951) Phys. Rev., 82, pp. 664-679
  • Fermi, E., On the theory of collisions between atoms and electrically charged particles (1925) Nuovo Cimento, 2, pp. 143-158
  • Weizsäcker, C.F., Radiation emitted in collisions of very fast electrons (1934) Z. Phys., 88, pp. 612-625
  • Williams, E.J., Nature of the high energy particles of penetrating radiation and status of ionization and radiation formulae (1934) Phys. Rev., 45, pp. 729-730
  • D'Enterria, D., Silveira, G.G., Observing light-by-light scattering at the large hadron collider (2013) Phys. Rev. Lett., 111, p. 080405. , erratum 116, 129901 (2016)
  • Abelev, B., (ALICE Collaboration) Measurement of the cross section for electromagnetic dissociation with neutron emission in Pb-Pb collisions at psNND2.76 TeV (2012) Phys. Rev. Lett., 109, p. 252302
  • Knapen, S., Searching for axionlike particles with ultraperipheral heavy-ion collisions (2017) Phys. Rev. Lett., 118, p. 171801
  • The ATLAS experiment at the CERN large hadron collider (2008) JINST, 3, p. S08003. , ATLAS Collaboration
  • Charged-particle distributions at low transverse momentum in p sD13 TeV pp interactions measured with the ATLAS detector at the LHC (2016) Eur. Phys. J. C, 76, p. 502. , ATLAS Collaboration
  • Performance of the ATLAS trigger system in 2010 (2012) Eur. Phys. J. C, 72, p. 1849. , ATLAS Collaboration
  • Agostinelli, S., GEANT4: A Simulation toolkit (2003) Nucl. Instrum. Meth. A, 506, pp. 250-303
  • The ATLAS simulation infrastructure (2010) Eur. Phys. J. C, 70, pp. 823-874. , ATLAS Collaboration
  • Köusek-Gawenda, M., Lebiedowicz, P., Szczurek, A., Light-by-light scattering in ultraperipheral Pb-Pb collisions at energies available at the CERN Large Hadron Collider (2016) Phys. Rev. C, 93, p. 044907
  • Fichet, S., Light-by-light scattering with intact protons at the LHC: From standard model to new physics (2015) J. High Energy Phys., 2, p. 165
  • Klein, S.R., STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions (2017) Comput. Phys. Commun., 212, pp. 258-268
  • Bern, Z., QCD and QED corrections to light by light scattering (2001) J. High Energy Phys., 11, p. 031
  • Köusek-Gawenda, M., Schäfer, W., Szczurek, A., Two-gluon exchange contribution to elastic ! scattering and production of two-photons in ultraperipheral ultrarelativistic heavy ion and proton-proton collisions (2016) Phys. Lett. B, 761, pp. 399-407
  • Abbas, E., (ALICE Collaboration) Charmonium and eCe+ pair photoproduction at mid-rapidity in ultra-peripheral Pb-Pb collisions at psNND2.76 TeV (2013) Eur. Phys. J. C, 73, p. 2617
  • Harland-Lang, L.A., Khoze, V.A., Ryskin, M.G., Exclusive physics at the LHC with SuperChic 2 (2016) Eur. Phys. J. C, 76, p. 9
  • Eskola, K.J., Paukkunen, H., Salgado, C.A., EPS09: A new generation of NLO and LO nuclear parton distribution functions (2009) J. High Energy Phys., 4, p. 065
  • Aaltonen, T., (CDF Collaboration) Observation of exclusive gamma gamma production in pNp collisions at p sD1.96 TeV (2012) Phys. Rev. Lett., 108, p. 081801
  • Bähr, M., HerwigCC physics and manual (2008) Eur. Phys. J. C, 58, pp. 639-707
  • Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data (2014) Eur. Phys. J. C, 74, p. 3071. , ATLAS Collaboration
  • Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data (2016) Eur. Phys. J. C, 76, p. 666. , ATLAS Collaboration
  • Baur, G., Coherent gamma gamma and gamma-A interactions in very peripheral collisions at relativistic ion colliders (2002) Phys. Rep., 364, pp. 359-450
  • Alwall, J., The automated computation of tree-level and next-to-leading order diffierential cross sections, and their matching to parton shower simulations (2014) J. High Energy Phys., 7, p. 79
  • Harland-Lang, L.A., Central exclusive meson pair production in the perturbative regime at hadron colliders (2011) Eur. Phys. J. C, 71, p. 1714
  • Harland-Lang, L.A., Central exclusive production as a probe of the gluonic component of the eta' and eta mesons (2013) Eur. Phys. J. C, 73, p. 2429
  • Ebert, D., Faustov, R.N., Galkin, V.O., Properties of heavy quarkonia and Bc mesons in the relativistic quark model (2003) Phys. Rev. D, 67, p. 014027
  • Segovia, J., Bottomonium spectrum revisited (2016) Phys. Rev. D, 93, p. 074027
  • Cowan, G., Asymptotic formulae for likelihood-based tests of new physics (2011) Eur. Phys. J. C, 71, p. 1554. , erratum 73, 2501 (2013)
  • Improved luminosity determination in pp collisions at p sD7 TeV using the ATLAS detector at the LHC (2013) Eur. Phys. J. C, 73, p. 2518. , ATLAS Collaboration
  • Luminosity determination in pp collisions at p sD8 TeV using the ATLAS detector at the LHC (2016) Eur. Phys. J. C, 76, p. 653. , ATLAS Collaboration;

Citas:

---------- APA ----------
(2017) . Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC. Nature Physics, 13(9), 852-858.
http://dx.doi.org/10.1038/nphys4208
---------- CHICAGO ----------
Aaboud, M. "Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC" . Nature Physics 13, no. 9 (2017) : 852-858.
http://dx.doi.org/10.1038/nphys4208
---------- MLA ----------
Aaboud, M. "Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC" . Nature Physics, vol. 13, no. 9, 2017, pp. 852-858.
http://dx.doi.org/10.1038/nphys4208
---------- VANCOUVER ----------
Aaboud, M. Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC. Nat. Phys. 2017;13(9):852-858.
http://dx.doi.org/10.1038/nphys4208