Artículo

Reis, S.D.S.; Hu, Y.; Babino, A.; Andrade, J.S., Jr.; Canals, S.; Sigman, M.; Makse, H.A. "Avoiding catastrophic failure in correlated networks of networks" (2014) Nature Physics. 10(10):762-767
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Networks in nature do not act in isolation, but instead exchange information and depend on one another to function properly. Theory has shown that connecting random networks may very easily result in abrupt failures. This finding reveals an intriguing paradox: if natural systems organize in interconnected networks, how can they be so stable? Here we provide a solution to this conundrum, showing that the stability of a system of networks relies on the relation between the internal structure of a network and its pattern of connections to other networks. Specifically, we demonstrate that if interconnections are provided by network hubs, and the connections between networks are moderately convergent, the system of networks is stable and robust to failure. We test this theoretical prediction on two independent experiments of functional brain networks (in task and resting states), which show that brain networks are connected with a topology that maximizes stability according to the theory.

Registro:

Documento: Artículo
Título:Avoiding catastrophic failure in correlated networks of networks
Autor:Reis, S.D.S.; Hu, Y.; Babino, A.; Andrade, J.S., Jr.; Canals, S.; Sigman, M.; Makse, H.A.
Filiación:Levich Institute and Physics Department, City College of New York, New York, NY 10031, United States
Departamento de Física, Universidade Federal Do Ceará, Fortaleza, Ceará, 60451-970, Brazil
Departamento de Física, FCEN-UBA, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Instituto de Neurociencias, CSIC-UMH, Campus de San Juan, Avenida Ramón y Cajal, San Juan de Alicante, 03550, Spain
Universidad Torcuato di Tella, Sáenz Valiente 1010, Buenos Aires, C1428BIJ, Argentina
Año:2014
Volumen:10
Número:10
Página de inicio:762
Página de fin:767
DOI: http://dx.doi.org/10.1038/nphys3081
Título revista:Nature Physics
Título revista abreviado:Nat. Phys.
ISSN:17452473
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17452473_v10_n10_p762_Reis

Referencias:

  • Little, R.G., Controlling cascading failure: Understanding the vulnerabilities of interconnected infrastructures (2002) J. Urban Technol., 9, pp. 109-123
  • Rosato, V., Modeling interdependent infrastructures using interacting dynamical models (2008) Int. J. Crit. Infrastruct., 4, pp. 63-79
  • Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S., Catastrophic cascade of failures in interdependent networks (2010) Nature, 464, pp. 1025-1028
  • Leicht, E.A., D'souza, R.M., (2009) Percolation on Interacting Networks, , http://arxiv.org/abs/0907.0894
  • Brummitt, C.D., D'souza, R.M., Leicht, E.A., Suppressing cascades of load in interdependent networks (2012) Proc. Natl Acad. Sci. USA, 109, pp. E680-E689
  • Gao, J., Buldyrev, S.V., Stanley, H.E., Havlin, S., Networks formed from interdependent networks (2012) Nature Phys., 8, pp. 40-48
  • Bianconi, G., Dorogovtsev, S.N., Mendes, J.F.F., (2014) Mutually Connected Component of Network of Networks, , http://arxiv.org/abs/1402.0215
  • Bianconi, G., Dorogovtsev, S.N., Multiple percolation transitions in a configuration model of network of networks (2014) Phys. Rev. e, 89, p. 062814
  • Dosenbach, N.U.F., Distinct brain networks for adaptive and stable task control in humans (2007) Proc. Natl Acad. Sci. USA, 104, pp. 11073-11078
  • Vidal, M., Cusick, M.E., Barabási, A.-L., Interactome networks and human disease (2011) Cell, 144, pp. 986-998
  • Pastor-Satorras, R., Vázquez, A., Vespignani, A., Dynamical and correlation properties of the Internet (2001) Phys. Rev. Lett., 87, p. 258701
  • Gallos, L.K., Song, C., Makse, H.A., Scaling of degree correlations and its influence on diffusion in scale-free networks (2008) Phys. Rev. Lett., 100, p. 248701
  • Radicchi, F., Driving interconnected networks to supercriticality (2014) Phys. Rev. X, 4, p. 021014
  • Gallos, L.K., Makse, H.A., Sigman, M., A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks (2012) Proc. Natl Acad. Sci. USA, 109, pp. 2825-2830
  • Moore, C., Newman, M.E.J., Exact solution of site and bond percolation on small-world networks (2000) Phys. Rev. e, 62, pp. 7059-7064
  • Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E., Robustness of a network formed by n interdependent networks with a one-to-one correspondence of dependent nodes (2012) Phys. Rev. e, 85, p. 066134
  • Bollobás, B., (1985) Random Graphs, , Academic
  • Cohen, R., Ben-Avraham, D., Havlin, S., Percolation critical exponents in scale-free networks (2002) Phys. Rev. e, 66, p. 036113
  • Eguiluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M., Apkarian, A.V., Scale-free brain functional networks (2005) Phys. Rev. Lett., 94, p. 018102
  • Bullmore, E., Sporns, O., Complex brain networks: Graph theoretical analysis of structural and functional systems (2009) Nature Rev. Neurosci., 10, pp. 186-198
  • Sigman, M., Top-down reorganization of activity in the visual pathway after learning a shape identification task (2005) Neuron, 46, pp. 823-835
  • Shehzad, Z., Kelly, A.M.C., Reiss, P.T., The resting brain: Unconstrained yet reliable (2009) Cereb. Cortex, 10, pp. 2209-2229
  • Sigman, M., Dehaene, S., Brain mechanisms of serial and parallel processing during dual-task performance (2008) J. Neurosci., 28, pp. 7585-7598
  • Russo, R., Herrmann, H.J., De Arcangelis, L., Brain modularity controls the critical behavior of spontaneous activity (2014) Sci. Rep., 4, p. 4312
  • Gallos, L.K., Sigman, M., Makse, H.A., The conundrum of functional brain networks: Small-world effciency or fractal modularity (2012) Front. Physiol., 3, p. 123
  • Honey, C.J., Predicting human resting-state functional connectivity from structural connectivity (2009) Proc. Natl Acad. Sci. USA, 106, pp. 2035-2040
  • Schneider, C.M., Yazdani, N., Araújo, N.A.M., Havlin, S., Herrmann, H.J., Towards designing robust coupled networks (2013) Sci. Rep., 3, p. 1969
  • Schneidman, E., Berry, M.J., Segev, R., Bialek, W., Weak pairwise correlations imply strongly correlated network states in a neural population (2006) Nature, 440, pp. 1007-1012
  • Clauset, A., Shalizi, C.R., Newman, M.E.J., Power-law distributions in empirical data (2009) SIAM Rev., 51, pp. 661-703

Citas:

---------- APA ----------
Reis, S.D.S., Hu, Y., Babino, A., Andrade, J.S., Jr., Canals, S., Sigman, M. & Makse, H.A. (2014) . Avoiding catastrophic failure in correlated networks of networks. Nature Physics, 10(10), 762-767.
http://dx.doi.org/10.1038/nphys3081
---------- CHICAGO ----------
Reis, S.D.S., Hu, Y., Babino, A., Andrade, J.S., Jr., Canals, S., Sigman, M., et al. "Avoiding catastrophic failure in correlated networks of networks" . Nature Physics 10, no. 10 (2014) : 762-767.
http://dx.doi.org/10.1038/nphys3081
---------- MLA ----------
Reis, S.D.S., Hu, Y., Babino, A., Andrade, J.S., Jr., Canals, S., Sigman, M., et al. "Avoiding catastrophic failure in correlated networks of networks" . Nature Physics, vol. 10, no. 10, 2014, pp. 762-767.
http://dx.doi.org/10.1038/nphys3081
---------- VANCOUVER ----------
Reis, S.D.S., Hu, Y., Babino, A., Andrade, J.S., Jr., Canals, S., Sigman, M., et al. Avoiding catastrophic failure in correlated networks of networks. Nat. Phys. 2014;10(10):762-767.
http://dx.doi.org/10.1038/nphys3081