Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Structured elastomeric composites (SECs) with electrically conductive fillers display anisotropic piezoresistivity. The fillers do not form string-of-particle structures but pseudo-chains formed by grouping micro-sized clusters containing nanomagnetic particles surrounded by noble metals (e.g. silver, Ag). The pseudo-chains are formed when curing or preparing the composite in the presence of a uniform magnetic field, thus pseudo-chains are aligned in the direction of the field. The electrical conduction through pseudo-chains is analyzed and a constitutive model for the anisotropic reversible piezoresistivity in SECs is proposed. Several effects and characteristics, such as electron tunnelling, conduction inside the pseudo-chains, and chain-contact resistivity, are included in the model. Experimental results of electrical resistance, R, as a function of the normal stress applied in the direction of the pseudo-chains, P, are very well fitted by the model in the case of Fe3O4[Ag] microparticles magnetically aligned while curing in polydimethylsiloxane, PDMS. The cross sensitivity of different parameters (like the potential barrier and the effective distance for electron tunnelling) is evaluated. The model predicts the presence of several gaps for electron tunnelling inside the pseudo-chains. Estimates of those parameters for the mentioned experimental system under strains up to 20% are presented. Simulations of the expected response for other systems are performed showing the influence of Young's modulus and other parameters on the predicted piezoresistivity. © The Royal Society of Chemistry 2016.

Registro:

Documento: Artículo
Título:Anisotropic reversible piezoresistivity in magnetic-metallic/polymer structured elastomeric composites: Modelling and experiments
Autor:Mietta, J.L.; Tamborenea, P.I.; Martin Negri, R.
Filiación:Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Departamento de Física and Instituto de Física de Buenos Aires (IFIBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Palabras clave:Anisotropy; Curing; Elastic moduli; Electron tunneling; Fillers; Iron oxides; Magnetite; Silicones; Contact resistivities; Elastomeric composite; Electrical conduction; Electrical resistances; Electrically conductive; Modelling and experiments; Nanomagnetic particles; Uniform magnetic fields; Chains
Año:2016
Volumen:12
Número:2
Página de inicio:422
Página de fin:431
DOI: http://dx.doi.org/10.1039/c5sm02268a
Título revista:Soft Matter
Título revista abreviado:Soft Matter
ISSN:1744683X
CODEN:SMOAB
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1744683X_v12_n2_p422_Mietta

Referencias:

  • Ruiz, M.M., Claudia Marchi, M., Perez, O.E., Jorge, G.E., Fascio, M., D'Accorso, N., Martn Negri, R., (2015) J. Polym. Sci., Part B: Polym. Phys., 53, pp. 574-586
  • Ruiz, M.M., Mietta, J.L., Antonel, P.S., Pérez, O.E., Negri, R.M., Jorge, G., (2013) J. Magn. Magn. Mater., 327, pp. 11-19
  • Shahrivar, K., De Vicente, J., (2013) Soft Matter, 9, pp. 11451-11456
  • Varga, Z., Filipcsei, G., Zrnyi, M., (2006) Polymer, 47, pp. 227-233
  • Mietta, J.L., Ruiz, M.M., Antonel, P.S., Perez, O.E., Butera, A., Jorge, G., Negri, R.M., (2012) Langmuir, 28, pp. 6985-6996
  • Mietta, J.L., Jorge, G., Perez, O.E., Maeder, T., Negri, R.M., (2013) Sens. Actuators, A, 192, pp. 34-41
  • Mietta, J.L., Jorge, G., Negri, R.M., (2014) Smart Mater. Struct., 23, p. 085026
  • Coquelle, E., Bossis, G., (2005) J. Adv. Sci., 17, pp. 132-138
  • Kchit, N., Bossis, G., (2009) J. Phys. D: Appl. Phys., 42, p. 105505
  • Kchit, N., Lancon, P., Bossis, G., (2009) J. Phys. D: Appl. Phys., 42, p. 105506
  • Mietta, J.L., Negri, R.M., Tamborenea, P.I., (2014) J. Phys. Chem. C, 118, pp. 20594-20604
  • Filipcsei, G., Csetneki, I., Szilágyi, A., Zrnyi, M., (2007) Oligomers-Polymer Composites-Molecular Imprinting, pp. 137-189. , Springer
  • Butera, A., Álvarez, N., Jorge, G., Ruiz, M., Mietta, J., Negri, R., (2012) Phys. Rev. B: Condens. Matter Mater. Phys., 86, p. 144424
  • Liu, T., Gong, X., Xu, Y., Xuan, S., Jiang, W., (2013) Soft Matter, 9, pp. 10069-10080
  • Günther, D., Borin, D.Y., Günther, S., Odenbach, S., (2012) Smart Mater. Struct., 21, p. 015005
  • Gundermann, T., Odenbach, S., (2014) Smart Mater. Struct., 23, p. 105013
  • Hou, Y., Wang, D., Zhang, X.-M., Zhao, H., Zha, J.-W., Dang, Z.-M., (2013) J. Mater. Chem. C, 1, pp. 515-521
  • Mohiuddin, M., (2012), PhD thesis, Concordia University; Ku-Herrera, J., Avilés, F., Seidel, G., (2013) Smart Mater. Struct., 22, p. 085003
  • Mark, J.E., (1996) Physical Properties of Polymers Handbook, , Springer
  • Lau, Y., Tang, W., (2009) J. Appl. Phys., 105, p. 124902
  • Gomez, M.R., French, D.M., Tang, W., Zhang, P., Lau, Y., Gilgenbach, R., (2009) Appl. Phys. Lett., 95, p. 072103
  • Zhang, P., Lau, Y., (2010) J. Appl. Phys., 108, p. 044914
  • Holm, E., Williamson, J., Holm, R., (2010) Electric Contacts: Theory and Application, , Springer, Berlin, Heidelberg
  • Zhang, P., Lau, Y., Tang, W., Gomez, M., French, D., Zier, J., Gilgenbach, R., (2011) Electrical Contacts (Holm), 2011 IEEE 57th Holm Conference on, pp. 1-6
  • Zhang, P., (2012), PhD thesis, The University of Michigan; Samsonov, G., (2012) Handbook of the Physicochemical Properties of the Elements, , Springer, US
  • Stassi, S., Cauda, V., Canavese, G., Pirri, C.F., (2014) Sensors, 14, pp. 5296-5332
  • Zhang, X.-W., Pan, Y., Zheng, Q., Yi, X.-S., (2000) J. Polym. Sci., Part B: Polym. Phys., 38, pp. 2739-2749
  • Kalantari, M., Dargahi, J., Kövecses, J., Mardasi, M.G., Nouri, S., (2012) IEEE/ASME Trans. Mechatronics, 17, pp. 572-581
  • Ambrosetti, G., Grimaldi, C., Balberg, I., Maeder, T., Danani, A., Ryser, P., (2010) Phys. Rev. B: Condens. Matter Mater. Phys., 81, p. 155434
  • Sureshkumar, M., Na, H.Y., Ahn, K.H., Lee, S.J., (2015) ACS Appl. Mater. Interfaces, 7, pp. 756-764
  • Gong, S., Zhu, Z.H., (2014) Polymer, 55, pp. 4136-4149
  • Park, J., Lee, Y., Hong, J., Ha, M., Jung, Y.-D., Lim, H., Kim, S.Y., Ko, H., (2014) ACS Nano, 8, pp. 4689-4697
  • Li, C., Thostenson, E.T., Chou, T.-W., (2007) Appl. Phys. Lett., 91, p. 223114
  • Simmons, J.G., (1964) J. Appl. Phys., 35, pp. 2655-2658
  • Chen, C., (2008) Introduction to Scanning Tunneling Microscopy, , OUP, Oxford
  • Jin, C., Thygesen, K.S., (2014) Phys. Rev. B: Condens. Matter Mater. Phys., 89, p. 041102
  • Ma, X., Shu, Q., Meng, S., Ma, W., (2003) Thin Solid Films, 436, pp. 292-297
  • Kathriner, T., (2008), Diploma thesis, ETH Zürich; Ivaneyko, D., Toshchevikov, V., Saphiannikova, M., Heinrich, G., (2014) Soft Matter, 10, pp. 2213-2225
  • Domurath, J., Saphiannikova, M., Ausias, G., Heinrich, G., (2012) J. Non-Newtonian Fluid Mech., 171, pp. 8-16
  • Yu, Y.-S., Zhao, Y.-P., (2009) J. Colloid Interface Sci., 332, pp. 467-476
  • Graessley, W., (2003) Polymeric Liquids and Networks, , Taylor & Francis
  • Nickalls, R., (2009) Math. Gaz., pp. 66-75
  • Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S., Park, I., (2014) ACS Nano, 8, pp. 5154-5163
  • Negri, R.M., Rodriguez, S.D., Bernik, D.L., Molina, F.V., Pilosof, A., Perez, O., (2010) J. Appl. Phys., 107, p. 113703

Citas:

---------- APA ----------
Mietta, J.L., Tamborenea, P.I. & Martin Negri, R. (2016) . Anisotropic reversible piezoresistivity in magnetic-metallic/polymer structured elastomeric composites: Modelling and experiments. Soft Matter, 12(2), 422-431.
http://dx.doi.org/10.1039/c5sm02268a
---------- CHICAGO ----------
Mietta, J.L., Tamborenea, P.I., Martin Negri, R. "Anisotropic reversible piezoresistivity in magnetic-metallic/polymer structured elastomeric composites: Modelling and experiments" . Soft Matter 12, no. 2 (2016) : 422-431.
http://dx.doi.org/10.1039/c5sm02268a
---------- MLA ----------
Mietta, J.L., Tamborenea, P.I., Martin Negri, R. "Anisotropic reversible piezoresistivity in magnetic-metallic/polymer structured elastomeric composites: Modelling and experiments" . Soft Matter, vol. 12, no. 2, 2016, pp. 422-431.
http://dx.doi.org/10.1039/c5sm02268a
---------- VANCOUVER ----------
Mietta, J.L., Tamborenea, P.I., Martin Negri, R. Anisotropic reversible piezoresistivity in magnetic-metallic/polymer structured elastomeric composites: Modelling and experiments. Soft Matter. 2016;12(2):422-431.
http://dx.doi.org/10.1039/c5sm02268a