Abstract:
Recent observations of coronal loops in solar active regions show that their heating must be a truly dynamic process. Even though it seems clear that the energy source is the magnetic field that confines the coronal plasma, the details of how it dissipates are still a matter of debate. In this presentation we review the theoretical models of coronal heating, which have been traditionally clasified as DC or AC depending on the electrodynamic response of the loops to the photospheric driving motions. Also, we show results from numerical simulations of the internal dynamics of coronal loops within the framework of the reduced MHD approximation. These simulations indicate that the application of a stationary velocity field at the photospheric boundary leads to a turbulent stationary regime after several photospheric turnover times. Once this turbulent regime is set, both DC and AC stresses dissipate at faster rates as a result of a direct energy cascade. © International Astronomical Union 2011.
Referencias:
- Aschwanden, M.J., (2004) Physics of the Solar Corona. An Introduction, , Springer-Verlag, Berlin
- Aulanier, G., (2011) Proc. IAU Symp. 273: Physics of the Sun and Star Spots, , press
- Demoulin, P., Van Driel-Gesztelyi, L., Mandrini, C.H., Klimchuk, J.A., Harra, L., (2003) Astrophys. J., 586, p. 592
- Dmitruk, P., Gomez, D.O., (1997) Astrophys. J., 484, pp. L83
- Dmitruk, P., Gomez, D.O., Deluca, E., (1998) Astrophys. J., 505, p. 974
- Dmitruk, P., Gomez, D.O., (1999) Astrophys. J., 527, pp. L63
- Galsgaard, K., Nordlund, A., (1996) J. Geophys. Res., 101, p. 13445
- Georgoulis, M., Velli, M., Einaudi, G., (1998) Astrophys. J., 497, p. 957
- Gomez, D.O., (1990) Fund. Cosmic Phys., 14, p. 361
- Gomez, D.O., Ferro Fontan, C., (1988) Solar Phys., 116, p. 33
- Gomez, D.O., Ferro Fontan, C., (1992) Astrophys. J., 394, p. 662
- Gomez, D.O., Dmitruk, P., (2008) Proc. IAU Symp. 247: Waves and Oscillations in the Solar Atmosphere, p. 269. , Eds. R. Erdelyi & C.A. Mendoza-Briceno
- Gudiksen, B.V., Nordlund, A., (2002) Astrophys. J., 572, pp. L113
- Hendrix, D.L., Van Hoven, G., (1996) Astrophys. J., 467, p. 887
- Heyvaerts, J., Priest, E.R., (1992) Astrophys. J., 390, p. 297
- Inverarity, G.W., Priest, E.R., (1995) Astron. Astrophys, 302, p. 567
- Longcope, D.W., Sudan, R.N., (1994) Astrophys. J., 437, p. 491
- Mandrini, C.H., Demoulin, P., Klimchuk, J.A., (2000) Astrophys. J., 530, p. 999
- Mikic, Z., Schnack, D.D., Van Hoven, G., (1989) Astrophys. J., 338, p. 1148
- Narain, U., Ulmschneider, P., (1990) Space Sci. Rev., 54, p. 377
- Narain, U., Ulmschneider, P., (1996) Space Sci. Rev., 75, p. 453
- Parker, E.N., (1972) Astrophys. J., 174, p. 499
- Parker, E.N., (1988) Astrophys. J., 330, p. 474
- Patsourakos, S., Klimchuk, J.A., (2009) Astrophys. J., 696, p. 760
- Rappazzo, A.F., Velli, M., Einaudi, G., Dahlburg, R.B., (2008) Astrophys. J., 677, p. 1348
- Strauss, H., (1976) Phys. Fluids, 19, p. 134
- Van Ballegooijen, A.A., (1986) Astrophys. J., 311, p. 1001
- Zirker, J.B., (1993) Solar Phys., 148, p. 43
Citas:
---------- APA ----------
(2010)
. Heating of coronal active regions. Proceedings of the International Astronomical Union, 6(S273), 44-50.
http://dx.doi.org/10.1017/S1743921311014980---------- CHICAGO ----------
Gómez, D.O.
"Heating of coronal active regions"
. Proceedings of the International Astronomical Union 6, no. S273
(2010) : 44-50.
http://dx.doi.org/10.1017/S1743921311014980---------- MLA ----------
Gómez, D.O.
"Heating of coronal active regions"
. Proceedings of the International Astronomical Union, vol. 6, no. S273, 2010, pp. 44-50.
http://dx.doi.org/10.1017/S1743921311014980---------- VANCOUVER ----------
Gómez, D.O. Heating of coronal active regions. Proc. Int. Astron. Union. 2010;6(S273):44-50.
http://dx.doi.org/10.1017/S1743921311014980