Artículo

Ibarra, L.E.; Porcal, G.V.; Macor, L.P.; Ponzio, R.A.; Spada, R.M.; Lorente, C.; Chesta, C.A.; Rivarola, V.A.; Palacios, R.E. "Metallated porphyrin-doped conjugated polymer nanoparticles for efficient photodynamic therapy of brain and colorectal tumor cells" (2018) Nanomedicine. 13(6):605-624
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Aim: Assess biocompatibility, uptake and photodynamic therapy (PDT) mechanism of metallated porphyrin doped conjugated polymer nanoparticles (CPNs) in human brain and colorectal tumor cells and macrophages. Materials & methods: CPNs were developed employing 9,9-dioctylfluorene-alt-benzothiadiazole, an amphiphilic polymer (PS-PEG-COOH), and platinum octaethylporphyrin. T98G, SW480 and RAW 264.7 cell lines were exposed to CPNs to assess uptake and intracellular localization. Additionally, a PDT protocol using CPNs was employed for the in vitro killing of cancer and macrophage cell lines. Results & conclusion: CPNs were well incorporated into glioblastoma and macrophage cells with localization in lysosomes. SW480 cells were less efficient incorporating CPNs with localization in the plasma membrane. In all cell lines PDT treatment was efficient inducing oxidative stress that triggered apoptosis. © 2018 Future Medicine Ltd.

Registro:

Documento: Artículo
Título:Metallated porphyrin-doped conjugated polymer nanoparticles for efficient photodynamic therapy of brain and colorectal tumor cells
Autor:Ibarra, L.E.; Porcal, G.V.; Macor, L.P.; Ponzio, R.A.; Spada, R.M.; Lorente, C.; Chesta, C.A.; Rivarola, V.A.; Palacios, R.E.
Filiación:Universidad Nacional de Río Cuarto y CONICET, Instituto de Biotecnología Ambiental y Salud (INBIAS), Dto. Biología Molecular, Facultad de Ciencias Exactas Fisicoquímicas y Naturales, Río Cuarto (5800), Córdoba, Argentina
Universidad Nacional de Río Cuarto y CONICET, Dto. Química, Facultad de Ciencias Exactas Fisicoquímicas y Naturales, Río Cuarto (5800), Córdoba, Argentina
Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados, UNRC-CONICET, Argentina
Universidad Nacional de Río Cuarto y CONICET, Dto. Física, Facultad de Ciencias Exactas Fisicoquímicas y Naturales, Río Cuarto (5800), Córdoba, Argentina
Universidad Nacional de la Plata y CONICET, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Dto. Química, Facultad de Ciencias Exactas, CCT la Plata CONICET, La Plata (1900), Buenos Aires, Argentina
Palabras clave:apoptosis; brain tumor; colorectal tumor; conjugated polymer nanoparticles; metallated porphyrin; photodynamic therapy; ROS; conjugated polymer nanoparticle; metalloporphyrin; nanoparticle; unclassified drug; apoptosis; Article; biocompatibility; brain tumor cell line; cell damage; cell killing; cell membrane; cellular distribution; colorectal cancer cell line; controlled study; cytotoxicity; drug mechanism; human; human cell; in vitro study; lysosome; macrophage; oxidative stress; photochemistry; photodynamic therapy; priority journal; RAW 264.7 cell line; SW480 cell line; T98G cell line
Año:2018
Volumen:13
Número:6
Página de inicio:605
Página de fin:624
DOI: http://dx.doi.org/10.2217/nnm-2017-0292
Título revista:Nanomedicine
Título revista abreviado:Nanomedicine
ISSN:17435889
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17435889_v13_n6_p605_Ibarra

Referencias:

  • Li, L., Huh, K.M., Polymeric nanocarrier systems for photodynamic therapy (2014) Biomater. Res., 18, p. 19
  • Milla Sanabria, L., Rodriguez, M.E., Cogno, I.S., Direct and indirect photodynamic therapy effects on the cellular and molecular components of the tumor microenvironment (2013) Biochim. Biophys. Acta., 1835 (1), pp. 36-45
  • Huang, Z., A review of progress in clinical photodynamic therapy (2005) Technol. Cancer Res. Treat., 4 (3), pp. 283-293
  • Mannino, S., Molinari, A., Sabatino, G., Intratumoral vs systemic administration of meta-tetrahydroxyphenylchlorin for photodynamic therapy of malignant gliomas: Assessment of uptake and spatial distribution in c6 rat glioma model (2008) Int. J. Immunopathol. Pharmacol., 21 (1), pp. 227-231
  • Matsumura, H., Akimoto, J., Haraoka, J., Aizawa, K., Uptake and retention of the photosensitizer mono-l-asparthyl chlorine e6 in experimental malignant glioma (2008) Lasers Med. Sci., 23 (3), pp. 237-245
  • Namatame, H., Akimoto, J., Matsumura, H., Haraoka, J., Aizawa, K., Photodynamic therapy of C6-implanted glioma cells in the rat brain employing second-generation photosensitizer talaporfin sodium (2008) Photodiagnosis Photodyn. Ther., 5 (3), pp. 198-209
  • Akimoto, J., Photodynamic therapy for malignant brain tumors (2016) Neurol. Med. Chir. (Tokyo)., 56 (4), pp. 151-157
  • Zavadskaya, T.S., Photodynamic therapy in the treatment of glioma (2015) Exp. Oncol., 37 (4), pp. 234-241
  • Kawczyk-Krupka, A., Bugaj, A.M., Latos, W., Zaremba, K., Wawrzyniec, K., Sieron, A., Photodynamic therapy in colorectal cancer treatment: The state of the art in clinical trials (2015) Photodiagnosis Photodyn. Ther., 12 (3), pp. 545-553
  • Kawczyk-Krupka, A., Bugaj, A.M., Latos, W., Photodynamic therapy in colorectal cancer treatment\\-The state of the art in preclinical research (2016) Photodiagnosis Photodyn. Ther., 13, pp. 158-174
  • Robertson, C.A., Evans, D.H., Abrahamse, H., Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT (2009) J. Photochem. Photobiol. B., 96 (1), pp. 1-8
  • Mroz, P., Yaroslavsky, A., Kharkwal, G.B., Hamblin, M.R., Cell death pathways in photodynamic therapy of cancer (2011) Cancers (Basel), 3 (2), pp. 2516-2539
  • Castano, A.P., Demidova, T.N., Hamblin, M.R., Mechanisms in photodynamic therapy: Part two-cellular signaling, cell metabolism and modes of cell death (2005) Photodiagnosis Photodyn. Ther., 2 (1), pp. 1-23
  • Rumie Vittar, N.B., Lamberti, M.J., Pansa, M.F., Ecological photodynamic therapy: New trend to disrupt the intricate networks within tumor ecosystem (2013) Biochim. Biophys. Acta, 1835 (1), pp. 86-99
  • Lucky, S.S., Soo, K.C., Zhang, Y., Nanoparticles in photodynamic therapy (2015) Chem. Rev., 115 (4), pp. 1990-2042
  • Debele, T.A., Peng, S., Tsai, H.C., Drug carrier for photodynamic cancer therapy (2015) Int. J. Mol. Sci., 16 (9), pp. 22094-22136
  • Achyuthan, K.E., Bergstedt, T.S., Chen, L., Fluorescence superquenching of conjugated polyelectrolytes: Applications for biosensing and drug discovery (2005) J. Mater. Chem., 15 (27-28), p. 2648
  • Xing, C., Xu, Q., Tang, H., Liu, L., Wang, S., Conjugated polymer/porphyrin complexes for efficient energy transfer and improving light-activated antibacterial activity (2009) J. Am. Chem. Soc., 131 (36), pp. 13117-13124
  • Tian, Z., Yu, J., Wu, C., Szymanski, C., McNeill, J., Amplified energy transfer in conjugated polymer nanoparticle tags and sensors (2010) Nanoscale, 2 (10), pp. 1999-2011
  • Szymanski, C., Wu, C., Hooper, J., Single molecule nanoparticles of the conjugated polymer MEH-PPV, preparation and characterization by near-field scanning optical microscopy (2005) J. Phys. Chem. B., 109 (18), pp. 8543-8546
  • Wu, C., Bull, B., Szymanski, C., Christensen, K., McNeill, J., Multicolor conjugated polymer dots for biological fluorescence imaging (2008) ACS Nano., 2 (11), pp. 2415-2423
  • Feng, X., Lv, F., Liu, L., Conjugated polymer nanoparticles for drug delivery and imaging (2010) ACS Appl. Mater. Interfaces, 2 (8), pp. 2429-2435
  • Li, S., Jiang, X.-F., Xu, Q.-H., Polyfluorene based conjugated polymer nanoparticles for two-photon live cell imaging (2017) Sci. China Chem, pp. 1-9
  • Lan, M., Zhao, S., Xie, Y., Water-soluble polythiophene for two-photon excitation fluorescence imaging and photodynamic therapy of cancer (2017) ACS Appl. Mater. Interfaces., 9 (17), pp. 14590-14595
  • Feng, G., Liu, J., Liu, R., Mao, D., Tomczak, N., Liu, B., Ultrasmall conjugated polymer nanoparticles with high specificity for targeted cancer cell imaging (2016) Adv. Sci., 4 (9), p. 1600407
  • Li, K., Liu, B., Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging (2014) Chem. Soc. Rev., 43 (18), pp. 6570-6597
  • Li, Y., Liu, J., Liu, B., Tomczak, N., Highly emissive PEG-encapsulated conjugated polymer nanoparticles (2012) Nanoscale, 4 (18), p. 5694
  • Pecher, J., Huber, J., Winterhalder, M., Zumbusch, A., Mecking, S., Tailor-made conjugated polymer nanoparticles for multicolor and multiphoton cell imaging (2010) Biomacromolecules., 11 (10), pp. 2776-2780
  • Wu, C., Szymanski, C., Mcneill, J., Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles (2006) Langmuir, 27, pp. 2956-2960
  • Doshi, M., Copik, A., Gesquiere, A.J., Development and characterization of conducting polymer nanoparticles for photodynamic therapy in vitro (2015) Photodiagnosis Photodyn. Ther., 12 (3), pp. 476-489
  • Doshi, M., Krienke, M., Khederzadeh, S., Conducting polymer nanoparticles for targeted cancer therapy (2015) RSC Adv., 5 (47), pp. 37943-37956
  • Bhattacharyya, S., Barman, M.K., Baidya, A., Patra, A., Singlet oxygen generation from polymer nanoparticles-photosensitizer conjugates using FRET cascade (2014) J. Phys. Chem. C., 118 (18), pp. 9733-9740
  • Chang, K., Tang, Y., Fang, X., Yin, S., Xu, H., Wu, C., Incorporation of porphyrin to-conjugated backbone for polymer-dot-sensitized photodynamic therapy (2016) Biomacromolecules, 17 (6), pp. 2128-2136
  • Dmitriev, R.I., Borisov, S.M., Dussmann, H., Versatile conjugated polymer nanoparticles for high-resolution O2 imaging in cells and 3D tissue models (2015) ACS Nano., 9 (5), pp. 5275-5288
  • Shen, X., Li, L., Min Chan, A.C., Gao, N., Yao, S.Q., Xu, Q.H., Water-soluble conjugated polymers for simultaneous two-photon cell imaging and two-photon photodynamic therapy (2013) Adv. Opt. Mater., 1 (1), pp. 92-99
  • Shen, X., Li, S., Li, L., Yao, S.Q., Xu, Q.H., Highly efficient, conjugated-polymer-based nano-photosensitizers for selectively targeted two-photon photodynamic therapy and imaging of cancer cells (2015) Chemistry, 21 (5), pp. 2214-2221
  • Mehraban, N., Freeman, H., Developments in PDT sensitizers for increased selectivity and singlet oxygen production (2015) Materials (Basel), 8 (7), pp. 4421-4456
  • Grimland, J.L., Wu, C., Ramoutar, R.R., Brumaghim, J.L., McNeill, J., Photosensitizer-doped conjugated polymer nanoparticles with high cross-sections for one-and two-photon excitation (2011) Nanoscale., 3 (4), pp. 1451-1455
  • Bilski, P., Dabestani, R., Chignell, C.F., Influence of cationic surfactant on the photoprocesses of eosine and rose bengal in aqueous solution (1991) J. Phys. Chem., 95 (15), pp. 5784-5791
  • Lindig, B.A., Rodgers, M.A.J., Schaap, A.P., Determination of the lifetime of singlet oxygen in water-d2 using 9,10-anthracenedipropionic acid, a water-soluble probe (1980) J. Am. Chem. Soc., 102 (17), pp. 5590-5593
  • Schmidt, R., Schaffner, K., Trost, W., Brauer, H.D., Wavelength-dependent and dual photochemistry of the endoperoxides of anthracene and 9,10-dimethylanthracene (1984) J. Phys. Chem., 88 (5), pp. 956-958
  • Necas, D., Klapetek, P., Gwyddion: An open-source software for SPM data analysis (2012) Open Phys., 10 (1), pp. 181-188
  • Ponzio, R.A., Marcato, Y.L., Gomez, M.L., Waiman, C.V., Chesta, C.A., Palacios, R.E., Crosslinked polymer nanoparticles containing single conjugated polymer chains (2017) Methods Appl. Fluoresc., 5 (2), p. 24001
  • Dunn, K.W., Kamocka, M.M., McDonald, J.H., A practical guide to evaluating colocalization in biological microscopy (2011) AJP Cell Physiol., 300 (4), pp. C723-C742
  • Bolte, S., Cordelieres, F.P., A guided tour into subcellular colocalization analysis in light microscopy (2006) J. Microsc., 224 (3), pp. 213-232
  • Royall, J.A., Ischiropoulos, H., Evaluation of 2,7-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells (1993) Arch. Biochem. Biophys., 302 (2), pp. 348-355
  • AshaRani, P.V., Low Kah Mun, G., Hande, M.P., Valiyaveettil, S., Cytotoxicity and genotoxicity of silver nanoparticles in human cells (2009) ACS Nano., 3 (2), pp. 279-290
  • Mishra, P., Nayak, B., Dey, R.K., PEGylation in anti-cancer therapy: An overview (2016) Asian J. Pharm. Sci., 11 (3), pp. 337-348
  • Wu, C., Schneider, T., Zeigler, M., Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting (2010) J. Am. Chem. Soc., 132 (43), pp. 15410-15417
  • Nifiatis, F., Su, W., Haley, J.E., Slagle, J.E., Cooper, T.M., Comparison of the photophysical properties of a planar, PtOEP, and a nonplanar, PtOETPP, porphyrin in solution and doped films (2011) J. Phys. Chem. A., 115 (47), pp. 13764-13772
  • Spada, R.M., Macor, L.P., Hernandez, L.I., Amplified singlet oxygen generation in metallated-porphyrin doped conjugated polymer nanoparticles (2018) Dye. Pigment., 149, pp. 212-223
  • Jimenez Banzo, A.M., (2008) New Insights in Photodynamic Therapy: Production, Diffusion and Reactivity of Singlet Oxygen in Biological Systems, , http://hdl.handle.net/10803/9310, Doctoral thesis, Universitat Ramon Llull, Barcelona, Spain
  • Khan, A.U., Kasha, M., Direct spectroscopic observation of singlet oxygen emission at 1268 nm excited by sensitizing dyes of biological interest in liquid solution (1979) Proc. Natl Acad. Sci. USA, 76 (12), pp. 6047-6049
  • Shen, X., Li, L., Wu, H., Yao, S.Q., Xu, Q.-H., Photosensitizer-doped conjugated polymer nanoparticles for simultaneous two-photon imaging and two-photon photodynamic therapy in living cells (2011) Nanoscale, 3 (12), p. 5140
  • Bonnett, R., Martinez, G., Photobleaching of sensitisers used in photodynamic therapy (2001) Tetrahedron, 57 (47), pp. 9513-9547
  • Penaloza, J.P., Marquez-Miranda, V., Cabana-Brunod, M., Intracellular trafficking and cellular uptake mechanism of PHBV nanoparticles for targeted delivery in epithelial cell lines (2017) J. Nanobiotechnol., 15 (1), p. 1
  • Han, Y., Li, X., Chen, H., Real-time imaging of endocytosis and intracellular trafficking of semiconducting polymer dots (2017) ACS Appl. Mater. Interfaces., 9 (25), pp. 21200-21208
  • Shen, X., Li, L., Wu, H., Yao, S.Q., Xu, Q.-H., Photosensitizer-doped conjugated polymer nanoparticles for simultaneous two-photon imaging and two-photon photodynamic therapy in living cells (2011) Nanoscale, 3 (12), pp. 5140-5146
  • Li, S., Shen, X., Li, L., Conjugated-polymer-based red-emitting nanoparticles for two-photon excitation cell imaging with high contrast (2014) Langmuir, 30 (26), pp. 7623-7627
  • Haimov, E., Weitman, H., Ickowicz, D., Malik, Z., Ehrenberg, B., Pdot nanoparticles attach photosensitizers non-covalently and enhance efficiently the photodynamic effect by FRET (2015) RSC Adv., 5, pp. 18482-18491
  • Fernando, L.P., Kandel, P.K., Yu, J., McNeill, J., Ackroyd, P.C., Christensen, K.A., Mechanism of cellular uptake of highly fluorescent conjugated polymer nanoparticles (2010) Biomacromolecules, 11 (10), pp. 2675-2682
  • Commisso, C., Davidson, S.M., Soydaner-Azeloglu, R.G., Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells (2013) Nature, 497 (7451), pp. 633-637
  • Feng, L., Zhu, J., Wang, Z., Biological functionalization of conjugated polymer nanoparticles for targeted imaging and photodynamic killing of tumor cells (2016) ACS Appl. Mater. Interfaces., 8 (30), pp. 19364-19370
  • Tang, Y., Chen, H., Chang, K., Photo-cross-linkable polymer dots with stable sensitizer loading and amplified singlet oxygen generation for photodynamic therapy (2017) ACS Appl. Mater. Interfaces., 9 (4), pp. 3419-3431
  • Vinogradov, S., Warren, G., Wei, X., Macrophages associated with tumors as potential targets and therapeutic intermediates (2014) Nanomedicine, 9, pp. 695-707
  • Hayashi, N., Kataoka, H., Yano, S., A novel Photodynamic therapy targeting cancer cells and tumor-associated macrophages (2014) Mol. Cancer Ther., 14 (2), pp. 452-460
  • Zhao, L., Su, R., Cui, W., Shi, Y., Liu, L., Su, C., Preparation of biocompatible heat-labile enterotoxin subunit B-bovine serum albumin nanoparticles for improving tumor-targeted drug delivery via heat-labile enterotoxin subunit B mediation (2014) Int. J. Nanomed., 9, p. 2149
  • Hong, C., Lee, J., Zheng, H., Hong, S.-S., Lee, C., Porous silicon nanoparticles for cancer photothermotherapy (2011) Nanoscale Res. Lett., 6 (1), p. 321
  • Henslee, E.A., Torcal Serrano, R.M., Labeed, F.H., Accurate quantification of apoptosis progression and toxicity using a dielectrophoretic approach (2016) Analyst., 141 (23), pp. 6408-6415

Citas:

---------- APA ----------
Ibarra, L.E., Porcal, G.V., Macor, L.P., Ponzio, R.A., Spada, R.M., Lorente, C., Chesta, C.A.,..., Palacios, R.E. (2018) . Metallated porphyrin-doped conjugated polymer nanoparticles for efficient photodynamic therapy of brain and colorectal tumor cells. Nanomedicine, 13(6), 605-624.
http://dx.doi.org/10.2217/nnm-2017-0292
---------- CHICAGO ----------
Ibarra, L.E., Porcal, G.V., Macor, L.P., Ponzio, R.A., Spada, R.M., Lorente, C., et al. "Metallated porphyrin-doped conjugated polymer nanoparticles for efficient photodynamic therapy of brain and colorectal tumor cells" . Nanomedicine 13, no. 6 (2018) : 605-624.
http://dx.doi.org/10.2217/nnm-2017-0292
---------- MLA ----------
Ibarra, L.E., Porcal, G.V., Macor, L.P., Ponzio, R.A., Spada, R.M., Lorente, C., et al. "Metallated porphyrin-doped conjugated polymer nanoparticles for efficient photodynamic therapy of brain and colorectal tumor cells" . Nanomedicine, vol. 13, no. 6, 2018, pp. 605-624.
http://dx.doi.org/10.2217/nnm-2017-0292
---------- VANCOUVER ----------
Ibarra, L.E., Porcal, G.V., Macor, L.P., Ponzio, R.A., Spada, R.M., Lorente, C., et al. Metallated porphyrin-doped conjugated polymer nanoparticles for efficient photodynamic therapy of brain and colorectal tumor cells. Nanomedicine. 2018;13(6):605-624.
http://dx.doi.org/10.2217/nnm-2017-0292