Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

By placing stiff structures under soft materials, prior studies have demonstrated that cells sense and prefer to position themselves over the stiff structures. However, an understanding of how cells migrate on such surfaces has not been established. Many studies have also shown that cells readily align to surface topography. Here we investigate the influence of these two aspects in directing cell migration on surfaces with 5 and 10 μm line stiffness patterns (a cellular to subcellular length scale). A simple approach to create flat, stiffness-patterned surfaces by suspending a thin, low modulus polydimethylsiloxane (PDMS) film over a high modulus PDMS structure is presented, as well as a route to add undulations. We confirm that cells are able to sense through the thin film by observation of focal adhesions being positioned on stiff regions. We examine migration by introducing migration efficiency, a quantitative parameter to determine how strongly cells migrate in a certain direction. We found that cells have a preference to align and migrate along stiffness patterns while the addition of undulations boosts this effect, significantly increasing migration efficiency in either case. Interestingly, we found speed to play little role in the migration efficiency and to be mainly influenced by the top layer modulus. Our results demonstrate that both stiffness patterns and surface undulations are important considerations when investigating the interactions of cells with biomaterial surfaces. Statement of Significance Two common physical considerations for cell-surface interactions include patterned stiffness and patterned topography. However, their relative influences on cell migration behavior have not been established, particularly on cellular to subcellular scale patterns. For stiffness patterning, it has been recently shown that cells tend to position themselves over a stiff structure that is placed under a thin soft layer. By quantifying the directional migration efficiency on such surfaces with and without undulations, we show that migration can be manipulated by flat stiffness patterns, although surface undulations also play a strong role. Our results offer insight on the effect of cellular scale stiffness and topographical patterns on cell migration, which is critical for the development of fundamental cell studies and engineered implants. © 2016 Acta Materialia Inc.

Registro:

Documento: Artículo
Título:Guiding cell migration with microscale stiffness patterns and undulated surfaces
Autor:Pham, J.T.; Xue, L.; Del Campo, A.; Salierno, M.
Filiación:Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
INM-Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
Saarland University, Campus D2 2, Saarbrücken, 66123, Germany
Department of Biological Chemistry, School of Sciences, University of Buenos Aires, IQUIBICEN-CONICET, CABA, Argentina
School of Power and Mechanical Engineering, Wuhan University, South Donghu Road 8, Wuchang Wuhan, Hubei, 430072, China
Palabras clave:Cell migration; Focal adhesions; Migration efficiency; Stiffness patterns; Surface topography; dimeticone; paxillin; artificial membrane; baysilon; Article; cell function; cell heterogeneity; cell migration; cell structure; cell surface; controlled study; fibrosarcoma cell; film; focal adhesion; force; human; human cell; immunohistochemistry; molecular imaging; priority journal; rigidity; artificial membrane; cell line; cell motion; chemistry; surface property; Cell Line; Cell Movement; Dimethylpolysiloxanes; Humans; Membranes, Artificial; Surface Properties
Año:2016
Volumen:38
Página de inicio:106
Página de fin:115
DOI: http://dx.doi.org/10.1016/j.actbio.2016.04.031
Título revista:Acta Biomaterialia
Título revista abreviado:Acta Biomater.
ISSN:17427061
CAS:dimeticone, 32028-95-8, 68248-27-1, 9004-73-3, 9006-65-9; paxillin, 165945-21-1; baysilon; Dimethylpolysiloxanes; Membranes, Artificial
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17427061_v38_n_p106_Pham

Referencias:

  • Kishi, K., Onuma, T.A., Nishida, H., Long-distance cell migration during larval development in the appendicularian, Oikopleura dioica (2014) Dev. Biol., 395, pp. 299-306
  • Kobayashi, M., Lei, N.Y., Wang, Q., Wu, B.M., Dunn, J.C.Y., Orthogonally oriented scaffolds with aligned fibers for engineering intestinal smooth muscle (2015) Biomaterials, 61, pp. 75-84
  • Liu, Y., Ramanath, H.S., Wang, D.-A., Tendon tissue engineering using scaffold enhancing strategies (2008) Trends Biotechnol., 26, pp. 201-209
  • Kim, Y., Haftel, V.K., Kumar, S., Bellamkonda, R.V., The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps (2008) Biomaterials, 29, pp. 3117-3127
  • Koser, D.E., Moeendarbary, E., Hanne, J., Kuerten, S., Franze, K., CNS cell distribution and axon orientation determine local spinal cord mechanical properties (2015) Biophys. J., 108, pp. 2137-2147
  • Lopez, J.I., Mouw, J.K., Weaver, V.M., Biomechanical regulation of cell orientation and fate (2008) Oncogene, 27, pp. 6981-6993
  • Shirinsky, V.P., Antonov, A.S., Birukov, K.G., Sobolevsky, A.V., Romanov, Y.A., Kabaeva, N.V., Mehcano-chemical control of human orientation and size (1989) J. Cell Biol., 109, pp. 331-339
  • Repin, V.S., Dolgov, V.V., Zaikina, O.E., Novikov, I.D., Nikolaeva, M.A., Smirnov, V.N., Heterogeneity of endothelium in human aorta. A quantitative analysis by scanning electron microscopy (1984) Atherosclerosis, 50, pp. 35-52
  • Lu, P., Takai, K., Weaver, V.M., Werb, Z., Extracellular matrix degradation and remodeling in development and disease (2011) Cold Spring Harb. Perspect. Biol., 3, pp. 1-24
  • Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E., Matrix elasticity directs stem cell lineage specification (2006) Cell, 126, pp. 677-689
  • Kilian, K.A., Bugarija, B., Lahn, B.T., Mrksich, M., Geometric cues for directing the differentiation of mesenchymal stem cells (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 4872-4877
  • Vogel, V., Sheetz, M., Local force and geometry sensing regulate cell functions (2006) Nat. Rev. Mol. Cell Biol., 7, pp. 265-275
  • Teixeira, A.I., Ilkhanizadeh, S., Wigenius, J.A., Duckworth, J.K., Inganäs, O., Hermanson, O., The promotion of neuronal maturation on soft substrates (2009) Biomaterials, 30, pp. 4567-4572
  • Vincent, L.G., Choi, Y.S., Alonso-Latorre, B., Del Álamo, J.C., Engler, A.J., Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength (2013) Biotechnol. J., 8, pp. 472-484
  • Peyton, S.R., Putnam, A.J., Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion (2005) J. Cell. Physiol., 204, pp. 198-209
  • Nicolas, A., Safran, S.A., Limitation of cell adhesion by the elasticity of the extracellular matrix (2006) Biophys. J., 91, pp. 61-73
  • Guvendiren, M., Burdick, J.A., Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics (2012) Nat. Commun., 3, p. 792
  • Chaudhuri, O., Koshy, S.T., Branco da Cunha, C., Shin, J.-W., Verbeke, C.S., Allison, K.H., Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium (2014) Nat. Mater., 13
  • Ulrich, T.A., De Juan Pardo, E.M., Kumar, S., The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells (2009) Cancer Res., 69, pp. 4167-4174
  • Lo, C.M., Wang, H.B., Dembo, M., Wang, Y.L., Cell movement is guided by the rigidity of the substrate (2000) Biophys. J., 79, pp. 144-152
  • Ladoux, B., Nicolas, A., Physically based principles of cell adhesion mechanosensitivity in tissues (2012) Rep. Prog. Phys., 75, p. 116601
  • Saez, A., Ghibaudo, M., Buguin, A., Silberzan, P., Ladoux, B., Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 8281-8286
  • Kraning-Rush, C.M., Reinhart-King, C.A., Controlling matrix stiffness and topography for the study of tumor cell migration (2012) Cell Adhes. Migr., 6, pp. 274-279
  • Evans, N.D., Gentleman, E., The role of material structure and mechanical properties in cell-matrix interactions (2014) J. Mater. Chem. B, 2, p. 2345
  • Trappmann, B., Gautrot, J.E., Connelly, J.T., Strange, D.G.T., Li, Y., Oyen, M.L., Extracellular-matrix tethering regulates stem-cell fate (2012) Nat. Mater., 11, p. 742
  • Cortese, B., Gigli, G., Riehle, M., Mechanical gradient cues for guided cell motility and control of cell behavior on uniform substrates (2009) Adv. Funct. Mater., 19, pp. 2961-2968
  • Kuo, C.H.R., Xian, J., Brenton, J.D., Franze, K., Sivaniah, E., Complex stiffness gradient substrates for studying mechanotactic cell migration (2012) Adv. Mater., 24, pp. 6059-6064
  • Chao, P.H.G., Sheng, S.C., Chang, W.R., Micro-composite substrates for the study of cell-matrix mechanical interactions (2014) J. Mech. Behav. Biomed. Mater., 38, pp. 232-241
  • Degand, S., Knoops, B., Dupont-Gillain, C.C., Design and characterization of surfaces presenting mechanical nanoheterogeneities for a better control of cell-material interactions (2014) Colloids Surf. A, Physicochem. Eng. Asp., 442, pp. 164-172
  • Doyle, A.D., Wang, F.W., Matsumoto, K., Yamada, K.M., One-dimensional topography underlies three-dimensional fibrillar cell migration (2009) J. Cell Biol., 184, pp. 481-490
  • Versaevel, M., Grevesse, T., Gabriele, S., Spatial coordination between cell and nuclear shape within micropatterned endothelial cells (2012) Nat. Commun., 3, p. 671
  • Mohammadi, H., McCulloch, C.A., Impact of elastic and inelastic substrate behaviors on mechanosensation (2014) Soft Matter, 10, pp. 408-420
  • Lin, Y.C., Tambe, D.T., Park, C.Y., Wasserman, M.R., Trepat, X., Krishnan, R., Mechanosensing of substrate thickness (2010) Phys. Rev. e, 82, pp. 1-6
  • Maloney, J., Walton, E., Bruce, C., Van Vliet, K., Influence of finite thickness and stiffness on cellular adhesion-induced deformation of compliant substrata (2008) Phys. Rev. e, 78, p. 041923
  • Levental, I., Georges, P., Janmey, P., Soft biological materials and their impact on cell function (2007) Soft Matter, 3, p. 299
  • Chen, E.J., Novakofski, J., Kenneth Jenkins, W., O'Brien, W.D., Young's modulus measurements of soft tissues with application to elasticity imaging (1996) IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 43, pp. 191-194
  • Style, R.W., Hyland, C., Boltyanskiy, R., Wettlaufer, J.S., Dufresne, E.R., Surface tension and contact with soft elastic solids (2013) Nat. Commun., 4 (2728), pp. 1-6
  • Uttayarat, P., Toworfe, G.K., Dietrich, F., Lelkes, P.I., Composto, R.J., Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: Orientation of actin filaments and focal adhesions (2005) J. Biomed. Mater. Res. A., 75, pp. 668-680
  • Van Kooten, T.G., Whitesides, J.F., Von Recum, A.F., Influence of silicone (PDMS) surface texture on human skin fibroblast proliferation as determined by cell cycle analysis (1998) J. Biomed. Mater. Res., 43, pp. 1-14
  • Wang, J.H.-C., Jia, F., Gilbert, T.W., Woo, S.L.-Y., Cell orientation determines the alignment of cell-produced collagenous matrix (2003) J. Biomech., 36, pp. 97-102
  • Holthaus, M.G., Stolle, J., Treccani, L., Rezwan, K., Orientation of human osteoblasts on hydroxyapatite-based microchannels (2012) Acta Biomater., 8, pp. 394-403
  • Driscoll, M.K., Sun, X., Guven, C., Fourkas, J.T., Losert, W., Cellular contact guidance through dynamic sensing of nanotopography (2014) ACS Nano, 8, pp. 3546-3555
  • Dalton, B.A., Walboomers, X.F., Dziegielewski, M., Evans, M.D., Taylor, S., Jansen, J.A., Modulation of epithelial tissue and cell migration by microgrooves (2001) J. Biomed. Mater. Res., 56, pp. 195-207
  • Walboomers, X.F., Croes, H.J., Ginsel, L.A., Jansen, J.A., Contact guidance of rat fibroblasts on various implant materials (1999) J. Biomed. Mater. Res., 47, pp. 204-212
  • Lam, M.T., Clem, W.C., Takayama, S., Reversible on-demand cell alignment using reconfigurable microtopography (2008) Biomaterials, 29, pp. 1705-1712
  • Pholpabu, P., Kustra, S., Wu, H., Balasubramanian, A., Bettinger, C.J., Lithography-free fabrication of reconfigurable substrate topography for contact guidance (2015) Biomaterials, 39, pp. 164-172
  • Saito, A.C., Matsui, T.S., Sato, M., Deguchi, S., Aligning cells in arbitrary directions on a membrane sheet using locally formed microwrinkles (2014) Biotechnol. Lett., 36, pp. 391-396
  • Teixeira, A.I., Abrams, G.A., Bertics, P.J., Murphy, C.J., Nealey, P.F., Epithelial contact guidance on well-defined micro- and nanostructured substrates (2003) J. Cell Sci., 116, pp. 1881-1892
  • Salierno, M.J., García-Fernandez, L., Carabelos, N., Kiefer, K., García, A.J., Del Campo, A., Phototriggered fibril-like environments arbitrate cell escapes and migration from endothelial monolayers (2015) Biomaterials, 82, pp. 113-123
  • Yeong, W.Y., Yu, H., Lim, K.P., Ng, K.L.G., Boey, Y.C.F., Subbu, V.S., Multiscale topological guidance for cell alignment via direct laser writing on biodegradable polymer (2010) Tissue Eng. Part C. Meth., 16, pp. 1011-1021
  • Hu, J., Hardy, C., Chen, C.-M., Yang, S., Voloshin, A.S., Liu, Y., Enhanced cell adhesion and alignment on micro-wavy patterned surfaces (2014) PLoS ONE, 9, p. e104502
  • Fraley, S.I., Feng, Y., Krishnamurthy, R., Kim, D.-H., Celedon, A., Longmore, G.D., A distinctive role for focal adhesion proteins in three-dimensional cell motility (2010) Nat. Cell Biol., 12, pp. 598-604
  • Biela, S.A., Su, Y., Spatz, J.P., Kemkemer, R., Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano-micro range (2009) Acta Biomater., 5, pp. 2460-2466
  • Yamaguchi, H., Wyckoff, J., Condeelis, J., Cell migration in tumors (2005) Curr. Opin. Cell Biol., 17, pp. 559-564
  • Cox, T.R., Erler, J.T., Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer (2011) Dis. Model. Mech., 4, pp. 165-178
  • Lovett, M., Eng, G., Kluge, J.A., Cannizzaro, C., Vunjak-Novakovic, G., Kaplan, D.L., Tubular silk scaffolds for small diameter vascular grafts (2010) Organogenesis, 6, pp. 217-224
  • Leong, W.S., Tay, C.Y., Yu, H., Li, A., Wu, S.C., Duc, D.H., Thickness sensing of hMSCs on collagen gel directs stem cell fate (2010) Biochem. Biophys. Res. Commun., 401, pp. 287-292
  • Buxboim, A., Rajagopal, K., Brown, A.E.X., Discher, D.E., How deeply cells feel: Methods for thin gels (2010) J. Phys.: Condens. Matter, 22, p. 194116
  • Merkel, R., Kirchgessner, N., Cesa, C.M., Hoffmann, B., Cell force microscopy on elastic layers of finite thickness (2007) Biophys. J., 93, pp. 3314-3323
  • Davidson, P., Bigerelle, M., Bounichane, B., Giazzon, M., Anselme, K., Definition of a simple statistical parameter for the quantification of orientation in two dimensions: Application to cells on grooves of nanometric depths (2010) Acta Biomater., 6, pp. 2590-2598

Citas:

---------- APA ----------
Pham, J.T., Xue, L., Del Campo, A. & Salierno, M. (2016) . Guiding cell migration with microscale stiffness patterns and undulated surfaces. Acta Biomaterialia, 38, 106-115.
http://dx.doi.org/10.1016/j.actbio.2016.04.031
---------- CHICAGO ----------
Pham, J.T., Xue, L., Del Campo, A., Salierno, M. "Guiding cell migration with microscale stiffness patterns and undulated surfaces" . Acta Biomaterialia 38 (2016) : 106-115.
http://dx.doi.org/10.1016/j.actbio.2016.04.031
---------- MLA ----------
Pham, J.T., Xue, L., Del Campo, A., Salierno, M. "Guiding cell migration with microscale stiffness patterns and undulated surfaces" . Acta Biomaterialia, vol. 38, 2016, pp. 106-115.
http://dx.doi.org/10.1016/j.actbio.2016.04.031
---------- VANCOUVER ----------
Pham, J.T., Xue, L., Del Campo, A., Salierno, M. Guiding cell migration with microscale stiffness patterns and undulated surfaces. Acta Biomater. 2016;38:106-115.
http://dx.doi.org/10.1016/j.actbio.2016.04.031