Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Flagella-generated fluid stirring has been suggested to enhance nutrient uptake for sufficiently large micro-organisms, and to have played a role in evolutionary transitions to multicellularity. A corollary to this predicted size-dependent benefit is a propensity for phenotypic plasticity in the flow-generating mechanism to appear in large species under nutrient deprivation. We examined four species of volvocalean algae whose radii and flow speeds differ greatly, with Péclet numbers (Pe) separated by several orders of magnitude. Populations of unicellular Chlamydomonas reinhardtii and one- to eight-celled Gonium pectorale (Pe ∼ 0.1-1) and multicellular Volvox carteri and Volvox barberi (Pe ∼ 100) were grown in diluted and undiluted media. For C. reinhardtii and G. pectorale, decreasing the nutrient concentration resulted in smaller cells, but had no effect on flagellar length and propulsion force. In contrast, these conditions induced Volvox colonies to grow larger and increase their flagellar length, separating the somatic cells further. Detailed studies on V. carteri found that the opposing effects of increasing beating force and flagellar spacing balance, so the fluid speed across the colony surface remains unchanged between nutrient conditions. These results lend further support to the hypothesized link between the Péclet number, nutrient uptake and the evolution of biological complexity in the Volvocales. © 2011 The Royal Society.

Registro:

Documento: Artículo
Título:Flagellar phenotypic plasticity in volvocalean algae correlates with Péclet number
Autor:Solari, C.A.; Drescher, K.; Ganguly, S.; Kessler, J.O.; Michod, R.E.; Goldstein, R.E.
Filiación:Laboratorio de Biología Comparada de Protistas, Departamento de Biodiversidad Y Biología Experimental (FCEN), Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
Department of Physics, University of Arizona, Tucson, AZ 85721, United States
Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, United States
Palabras clave:Evolution; Flagella; Fluid dynamics; Nutrient uptake; Phenotypic plasticity; Volvox; Algae; Cells; Fluids; Nutrients; Evolution; Flagella; Nutrient uptake; Phenotypic plasticity; Volvox; Mutagenesis; alga; algal growth; article; cell size; Chlamydomonas reinhardtii; colony formation; extracellular matrix; flagellum; fluid flow; Gonium pectorale; mathematical computing; multiple linear regression analysis; nonhuman; nutrient concentration; nutrient limitation; nutrient uptake; Peclet number; phenotypic plasticity; plant life cycle stage; sedimentation; somatic cell; spheroid cell; swimming; velocity; volvocalean alga; Volvox; Volvox barberi; volvox carteri; algae; Chlamydomonadales; Chlamydomonas reinhardtii; Gonium pectorale; Volvox; Volvox barberi; Volvox carteri
Año:2011
Volumen:8
Número:63
Página de inicio:1409
Página de fin:1417
DOI: http://dx.doi.org/10.1098/rsif.2011.0023
Título revista:Journal of the Royal Society Interface
Título revista abreviado:J. R. Soc. Interface
ISSN:17425689
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_17425689_v8_n63_p1409_Solari.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17425689_v8_n63_p1409_Solari

Referencias:

  • Grosberg, R.K., Strathmann, R.R., The evolution of multicellularity: A minor mayor transition? (2007) Annu. Rev. Ecol. Evol. Syst., 38, pp. 621-654. , doi:10.1146/annurev.ecolsys.36.102403.114735
  • Smith, J.M., Szathmáry, E., (1995) The Major Transitions in Evolution, , Oxford, UK: Oxford University Press
  • Niklas, K.J., (1994) Plant Allometry, , Chicago, IL: University of Chicago Press
  • Weismann, A., (1891) Essays Upon Heredity and Kindred Biological Problems, , Oxford, UK: Clarendon Press
  • Short, M.B., Solari, C.A., Ganguly, S., Powers, T.R., Kessler, J.O., Goldstein, R.E., Flows driven by flagella of multicellular organisms enhance long-range molecular transport (2006) Proc. Natl Acad. Sci. USA, 103, pp. 8315-8319. , doi:10.1073/pnas.0600566103
  • Kirk, D.L., (1998) Volvox: Molecular-genetic Origins of Multicellularity and Cellular Differentiation, , Cambridge, UK: Cambridge University Press
  • Koufopanou, V., The evolution of soma in the Volvocales (1994) Am. Nat., 143, pp. 907-931. , doi:10.1086/285639
  • Solari, C.A., Kessler, J.O., Michod, R.E., A hydrodynamics approach to the evolution of multicellularity: Flagellar motility and the evolution of germ-soma differentiation in volvocalean green algae (2006) Am. Nat., 167, pp. 537-554. , doi:10.1086/501031
  • Coleman, A.W., Phylogenetic analysis of 'Volvocacae' for comparative genetic studies (1999) Proc. Natl Acad. Sci. USA, 96, pp. 13892-13897. , doi:10.1073/pnas.96.24.13892
  • Herron, M.D., Michod, R.E., Evolution of complexity in the volvocine algae: Transitions in individuality through Darwin's eye (2008) Evolution, 62, pp. 436-451. , doi:10.1111/j.1558-5646.2007.00304.x
  • Nozaki, H., Ohta, N., Takano, H., Watanabe, M.M., Reexamination of phylogenetic relationships within the colonial Volvocales (Chlorophyta): An analysis of atpB and rbcL gene sequences (1999) J. Phycol., 35, pp. 104-112. , doi:10.1046/j.1529-8817.1999.3510104.x
  • Nozaki, H., Origin and evolution of the genera Pleodorina and Volvox (Volvocales) (2003) Biologia - Section Botany, 58 (4), pp. 425-431
  • Nozaki, H., Ott, F.D., Coleman, A.W., Morphology, molecular phylogeny and taxonomy of two new species of Pleodorina (Volvoceae, Chlorophyceae) (2006) J. Phycol., 42, pp. 1072-1080. , doi:10.1111/j.1529-8817.2006.00255.x
  • Larson, A., Kirk, M.M., Kirk, D.L., Molecular phylogeny of the volvocine flagellates (1992) Mol. Biol. Evol., 9, pp. 85-105
  • Reynolds, C.S., (1984) The Ecology of Freshwater Phytoplankton, , Cambridge, UK: Cambridge University Press
  • Solari, C.A., Ganguly, S., Kessler, J.O., Michod, R.E., Goldstein, R.E., Multicellularity and the functional interdependence of motility and molecular transport (2006) Proc. Natl Acad. Sci. USA, 103, pp. 1353-1358. , doi:10.1073/pnas.0503810103
  • Hoops, H.J., Motility in the colonial and multicellular Volvocales: Structure, function, and evolution (1997) Protoplasma, 199, pp. 99-112. , doi:10.1007/BF01294499
  • Guyon, E., Hulin, J.P., Petit, L., Mitescu, C.D., (2001) Physical Hydrodynamics, , New York, NY: Oxford University Press
  • Purcell, E.M., Life at low Reynolds number (1977) Am. J. Phys., 45, pp. 3-11. , doi:10.1119/1.10903
  • Sultan, S.E., Phenotypic plasticity for plant development, function and life history (2000) Trends Plant Sci., 5, pp. 537-542. , doi:10.1016/51360-1385(00)01797-0
  • Miner, B.G., Evolution of feeding structure plasticity in marine invertebrate larvae: A possible trade-off between arm length and stomach size (2005) J. Exp. Mar. Biol. Ecol., 315, pp. 117-125. , doi:10.1016/j.jembe.2004.09.011
  • Kirk, D.L., Kirk, M.M., Protein synthetic patterns during the asexual life cycle of Volvox carteri (1983) Dev. Biol., 96, pp. 493-506. , doi:10.1016/0012-1606(83)90186-0
  • Desnitski, A.G., A review on the evolution of development in Volvox: Morphological and physiological aspects (1995) Eur. J. Protistol., 31, pp. 241-247
  • Solari, C.A., Michod, R.E., Goldstein, R.E., Volvox barberi, the fastest swimmer of the Volvocales (Chlorophyceae) (2008) J. Phycol., 44, pp. 1395-1398. , doi:10.1111/j.1529-8817.2008.00603.x
  • Drescher, K., Leptos, K.C., Goldstein, R.E., How to track protists in three dimensions (2009) Rev. Sci. Instrum., 80, p. 014301. , doi:10.1063/1.3053242
  • Drescher, K., Leptos, K.C., Tuval, I., Ishikawa, T., Pedley, T.J., Goldstein, R.E., Dancing Volvox: Hydrodynamic bound states of swimming algae (2009) Phys. Rev. Lett., 102, p. 168101. , doi:10.1103/PhysRevLett.102.168101
  • Solari, C.A., (2005) A Hydrodynamics Approach to the Evolution of Multicellularity: Flagellar Motility and the Evolution of Germ-soma Differentiation in Volvocalean Green Algae, , PhD thesis, University of Arizona, USA
  • Berg, H.C., Purcell, E.M., Physics of chemoreception (1977) Biophys. J., 20, pp. 193-219. , doi:10.1016/S0006-3495(77)85544-6
  • Jeffreys, H., Some problems of evaporation (1918) Phil. Mag., 35, pp. 423-441
  • Magar, V., Goto, T., Pedley, T.J., Nutrient uptake by a self-propelled steady squirmer (2003) Q. J. Mechanics Appl. Math., 56, pp. 65-91. , doi:10.1093/qjmam/56.1.65
  • Drescher, K., Goldstein, R.E., Tuval, I., Fidelity of adaptive phototaxis (2010) Proc. Natl Acad. Sci. USA, 107, pp. 11171-11176. , doi:10.1073/pnas.1000901107

Citas:

---------- APA ----------
Solari, C.A., Drescher, K., Ganguly, S., Kessler, J.O., Michod, R.E. & Goldstein, R.E. (2011) . Flagellar phenotypic plasticity in volvocalean algae correlates with Péclet number. Journal of the Royal Society Interface, 8(63), 1409-1417.
http://dx.doi.org/10.1098/rsif.2011.0023
---------- CHICAGO ----------
Solari, C.A., Drescher, K., Ganguly, S., Kessler, J.O., Michod, R.E., Goldstein, R.E. "Flagellar phenotypic plasticity in volvocalean algae correlates with Péclet number" . Journal of the Royal Society Interface 8, no. 63 (2011) : 1409-1417.
http://dx.doi.org/10.1098/rsif.2011.0023
---------- MLA ----------
Solari, C.A., Drescher, K., Ganguly, S., Kessler, J.O., Michod, R.E., Goldstein, R.E. "Flagellar phenotypic plasticity in volvocalean algae correlates with Péclet number" . Journal of the Royal Society Interface, vol. 8, no. 63, 2011, pp. 1409-1417.
http://dx.doi.org/10.1098/rsif.2011.0023
---------- VANCOUVER ----------
Solari, C.A., Drescher, K., Ganguly, S., Kessler, J.O., Michod, R.E., Goldstein, R.E. Flagellar phenotypic plasticity in volvocalean algae correlates with Péclet number. J. R. Soc. Interface. 2011;8(63):1409-1417.
http://dx.doi.org/10.1098/rsif.2011.0023