Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We study the Hamiltonian dynamics of the spherical spin model with fully-connected two-body random interactions. In the statistical physics framework, the potential energy is of the so-called p = 2 kind, closely linked to the scalar field theory. Most importantly for our setting, the energy conserving dynamics are equivalent to the ones of the Neumann integrable model. We take initial conditions from the Boltzmann equilibrium measure at a temperature that can be above or below the static phase transition, typical of a disordered (paramagnetic) or of an ordered (disguised ferromagnetic) equilibrium phase. We subsequently evolve the configurations with Newton dynamics dictated by a different Hamiltonian, obtained from an instantaneous global rescaling of the elements in the interaction random matrix. In the limit of infinitely many degrees of freedom, , we identify three dynamical phases depending on the parameters that characterise the initial state and the final Hamiltonian. We next set the analysis of the system with finite number of degrees of freedom in terms of N non-linearly coupled modes. We argue that in the limit the modes decouple at long times. We evaluate the mode temperatures and we relate them to the frequency-dependent effective temperature measured with the fluctuation-dissipation relation in the frequency domain, similarly to what was recently proposed for quantum integrable cases. Finally, we analyse the N - 1 integrals of motion, notably, their scaling with N, and we use them to show that the system is out of equilibrium in all phases, even for parameters that show an apparent Gibbs-Boltzmann behaviour of the global observables. We elaborate on the role played by these constants of motion after the quench and we briefly discuss the possible description of the asymptotic dynamics in terms of a generalised Gibbs ensemble. © 2018 IOP Publishing Ltd and SISSA Medialab srl.

Registro:

Documento: Artículo
Título:Quenched dynamics of classical isolated systems: The spherical spin model with two-body random interactions or the Neumann integrable model
Autor:Cugliandolo, L.F.; Lozano, G.S.; Nessi, N.; Picco, M.; Tartaglia, A.
Filiación:Laboratoire de Physique Théorique et Hautes Energies, UMR 7589, Sorbonne Universités, CNRS, 4 place Jussieu, Paris Cedex 05, 75252, France
Departamento de Fisica, FCEYN Universidad de Buenos Aires, IFIBA CONICET, Ciudad Universitaria, Pabellón 1, Buenos Aires, 1428, Argentina
Palabras clave:dynamical processes; energy landscapes; ergodicity breaking; numerical simulations
Año:2018
Volumen:2018
Número:6
DOI: http://dx.doi.org/10.1088/1742-5468/aac2fe
Título revista:Journal of Statistical Mechanics: Theory and Experiment
Título revista abreviado:J. Stat. Mech. Theory Exp.
ISSN:17425468
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17425468_v2018_n6_p_Cugliandolo

Referencias:

  • Bloch, I., Dalibard, J., Zwerger, W., (2008) Rev. Mod. Phys., 80, p. 885
  • Rigol, M., Dunjko, V., Yurovsky, V., Olshanii, M., (2007) Phys. Rev. Lett., 98
  • Rigol, M., Dunjko, V., Olshanii, M., (2008) Nature, 452, p. 854
  • Polkovnikov, A., Sengupta, K., Silva, A., Vengalattore, M., (2011) Rev. Mod. Phys., 83, p. 863
  • Calabrese, P., (2016) J. Stat. Mech., 2016 (6)
  • Gogolin, C., Eisert, J., (2016) Rep. Prog. Phys., 79 (5)
  • Cugliandolo, L.F., Lozano, G.S., Nessi, N., (2017) J. Stat. Mech.
  • Scaffidi, T., Altman, E., (2017) Semiclassical Theory of Many-body Quantum Chaos and Its Bound
  • Cugliandolo, L.F., Barrat, J.L., (2002) Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter, , Cugliandolo L F ed J L Barrat et al (arXiv:cond-mat/0210312)
  • Cavagna, A., (2009) Phys. Rep., 476, p. 51
  • Berthier, L., Biroli, G., (2011) Rev. Mod. Phys., 83, p. 587
  • Engel, A., (1993) Nucl. Phys., 410, p. 617
  • Franz, S., Mézard, M., (1994) Europhys. Lett., 26 (3), p. 209
  • Cugliandolo, L.F., Le Doussal, P., (1996) Phys. Rev., 53, p. 152
  • Neumann, C., (1859) Journal für Die Reine und Angewandte Mathematik, 56, pp. 46-63
  • Uhlenbeck, K.K., Springer (1982) Lecture Notes Math., 49, p. 146
  • Avan, J., Talon, M., (1990) Int. J. Mod. Phys., 5, p. 4477
  • Babelon, O., Talon, M., (1992) Nucl. Phys., 379, p. 321
  • Kosterlitz, J.M., Thouless, D.J., Jones, R.C., (1976) Phys. Rev. Lett., 36, p. 1217
  • Cugliandolo, L.F., Kurchan, J., (1993) Phys. Rev. Lett., 71, p. 173
  • Cugliandolo, L.F., Lozano, G.S., (1998) Phys. Rev. Lett., 80, p. 4979
  • Cugliandolo, L.F., Lozano, G.S., (1999) Phys. Rev., 59, p. 915
  • Mehta, M.L., (2004) Random Matrices, , (Amsterdam: Elsevier)
  • Mueller, M., Wyart, M., (2015) Ann. Rev. Condens. Matter Phys., 6, p. 177
  • Laloux, L., Kurchan, J., (1996) J. Phys. A: Math. Gen., 29 (9), p. 1929
  • Cugliandolo, L.F., Dean, D.S., (1995) J. Phys. A: Math. Gen., 28 (17), p. L453
  • Adler, R.A., (1981) The Geometry of Random Fields, , (New York: Wiley)
  • Bray, A.J., Dean, D.S., (2007) Phys. Rev. Lett., 98
  • Fyodorov, Y.V., (2016) J. Stat. Mech., 2016 (12). , 2016
  • Ben Arous, G., Sagun, L., Ugur Guney, V., Le Cun, Y., Explorations on high dimensional landscapes (2015) Int. Conf. on Learning Representations, , v4
  • Wales, D.J., (2004) Energy Landscapes: With Applications to Clusters, Biomolecules and Glasses, , (Cambridge: Cambridge University Press)
  • Susskind, L., (2003), arXiv:hep-th/0302219; Douglas, M.R., Shiffman, B., Zelditch, S., (2004) Commun. Math. Phys., 252, p. 325
  • Fyodorov, Y.V., Khoruzhenko, B.A., (2016) Proc. Natl Acad. Sci., 113, p. 6827
  • Fischer, K.H., Hertz, J.A., (1991) Spin Glasses, , (Cambridge: Cambridge University Press)
  • Edwards, S.F., Jones, R.C., (1976) J. Phys. A: Math. Gen., 9 (10), p. 1595
  • Semerjian, G., Cugliandolo, L.F., (2002) J. Phys. A: Math. Gen., 35 (23), p. 4837
  • Slanina, F., (2011) Phys. Rev., 83
  • Semerjian, G., Cugliandolo, L.F., (2003) Europhys. Lett., 61 (2), p. 247
  • Kuehn, R., (2015) Acta Phys. Pol., 46, p. 1653
  • Mézard, M., Parisi, G., Virasoro, M.A., (1986) Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications, 9. , (Singapore: World Scientific)
  • Shukla, P., Singh, S., (1981) J. Phys. C: Solid State Phys., 14 (4), p. L81
  • Ciuchi, S., Di Pasquale, F., (1988) Nucl. Phys., 300, p. 31
  • Cugliandolo, L.F., Dean, D.S., (1995) J. Phys. A: Math. Gen., 28 (15), p. 4213
  • Fyodorov, Y.V., Perret, A., Schehr, G., (2015) J. Stat. Mech., 2015 (11)
  • Dembo, A., Guionnet, A., Mazza, C., (2007) J. Stat. Phys., 126, p. 781
  • Bray, A.J., (1994) Adv. Phys., 43, p. 357
  • Onuki, A., (2004) Phase Transition Dynamics, , (Cambridge: Cambridge University Press)
  • Puri, S., Wadhawan, V., (2009) Kinetics of Phase Transitions, , (London: Taylor and Francis)
  • Corberi, F., Politi, P., (2015) C. R. Phys., 16, p. 255
  • Cugliandolo, L.F., Kurchan, J., Peliti, L., (1997) Phys. Rev., 55, p. 3898
  • Cugliandolo, L.F., (2011) J. Phys. A: Math. Theor., 44
  • Berges, J., Giamarchi, T., (2015) Strongly Interacting Quantum Systems out of Equilibrium, , Berges J ed T Giamarchi et al
  • Boyanovsky, D., Destri, C., De Vega, H.J., (2004) Phys. Rev., 69
  • Boyanovsky, D., De Vega, H.J., Holman, R., Salgado, J., (1999) Phys. Rev., 59
  • Sciolla, B., Biroli, G., (2010) Phys. Rev. Lett., 105
  • Sciolla, B., Biroli, G., (2011) J. Stat. Mech., 2011 (11)
  • Sciolla, B., Biroli, G., (2013) Phys. Rev., 88
  • Chandran, A., Nanduri, A., Gubser, S.S., Sondhi, S.L., (2013) Phys. Rev., 88
  • Maraga, A., Chiocchetta, A., Mitra, A., Gambassi, A., (2015) Phys. Rev., 92
  • Chiocchetta, A., Tavora, M., Gambassi, A., Mitra, A., (2016) Phys. Rev., 94
  • Chiocchetta, A., Gambassi, A., Diehl, S., Marino, J., (2017) Phys. Rev. Lett., 118
  • Babelon, O., Bernard, D., Talon, M., (2009) Introduction to Classical Integrable Systems, , (Cambridge: Cambridge University Press)
  • Dunajski, M., (2012) Integrable Systems, , (Cambridge: Cambridge University Lectures)
  • Arnold, V.I., (1978) Mathematical Methods of Classical Mechanics, 60. , (Berlin: Springer)
  • Yuzbashyan, E., (2016) Ann. Phys., 367, p. 288
  • Khinchin, A., (1949) Mathematical Foundations of Statistical Mechanics, , (New York: Dover)
  • Kubo, R., (1966) Rep. Prog. Phys., 29 (1), p. 255
  • Foini, L., Gambassi, A., Konik, R., Cugliandolo, L.F., (2017) Phys. Rev., 95
  • De Nardis, J., (2017) SciPost, 3, p. 023
  • Barrat, A., (1997) The P-spin Spherical Spin Glass Model, , (arXiv:cond-mat/9701031)
  • Cugliandolo, L.F., Kurchan, J., (1995) Phil. Mag., 71, p. 501
  • Castellani, T., Cavagna, A., (2005) J. Stat. Mech., 2005 (5)
  • Houghton, A., Jain, S., Young, A.P., (1983) Phys. Rev., 28, p. 2630
  • Franz, S., Parisi, G., (1995) J. Physique, 5, p. 1401
  • Barrat, A., Burioni, R., Mézard, M., (1996) J. Phys. A: Math. Gen., 29 (7), p. L81
  • Ermakov, V.P., (2008) Applicable Analysis and Discrete Mathematics, 2, pp. 123-145
  • Milne, W., (1930) Phys. Rev., 35, p. 863
  • Pinney, E., (1950) Proc. Am. Math. Soc., 1, p. 681
  • Sotiriadis, S., Cardy, J., (2010) Phys. Rev., 81
  • Eckstein, M., Kollar, M., Werner, P., (2009) Phys. Rev. Lett., 103
  • Schiró, M., Fabrizio, M., (2010) Phys. Rev. Lett., 105
  • Tsuji, N., Eckstein, M., Werner, P., (2013) Phys. Rev. Lett., 110
  • Tsuji, N., Werner, P., (2013) Phys. Rev., 88
  • Aron, C., Biroli, G., Cugliandolo, L.F., (2010) J. Stat. Mech., 2010 (11)
  • Calabrese, P., Gambassi, A., (2005) J. Phys. A: Math. Gen., 38 (1), p. R133
  • Corberi, F., Lippiello, E., Zannetti, M., (2007) J. Stat. Mech., 2007 (7)
  • Babelon, O., (2017), private communication

Citas:

---------- APA ----------
Cugliandolo, L.F., Lozano, G.S., Nessi, N., Picco, M. & Tartaglia, A. (2018) . Quenched dynamics of classical isolated systems: The spherical spin model with two-body random interactions or the Neumann integrable model. Journal of Statistical Mechanics: Theory and Experiment, 2018(6).
http://dx.doi.org/10.1088/1742-5468/aac2fe
---------- CHICAGO ----------
Cugliandolo, L.F., Lozano, G.S., Nessi, N., Picco, M., Tartaglia, A. "Quenched dynamics of classical isolated systems: The spherical spin model with two-body random interactions or the Neumann integrable model" . Journal of Statistical Mechanics: Theory and Experiment 2018, no. 6 (2018).
http://dx.doi.org/10.1088/1742-5468/aac2fe
---------- MLA ----------
Cugliandolo, L.F., Lozano, G.S., Nessi, N., Picco, M., Tartaglia, A. "Quenched dynamics of classical isolated systems: The spherical spin model with two-body random interactions or the Neumann integrable model" . Journal of Statistical Mechanics: Theory and Experiment, vol. 2018, no. 6, 2018.
http://dx.doi.org/10.1088/1742-5468/aac2fe
---------- VANCOUVER ----------
Cugliandolo, L.F., Lozano, G.S., Nessi, N., Picco, M., Tartaglia, A. Quenched dynamics of classical isolated systems: The spherical spin model with two-body random interactions or the Neumann integrable model. J. Stat. Mech. Theory Exp. 2018;2018(6).
http://dx.doi.org/10.1088/1742-5468/aac2fe