Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Birdsong is an active field of research in neuroscience, since songbirds learn their songs through a process similar to that followed by humans during vocal learning. Moreover, many of the vocalizations produced by birds are quite complex. Since the avian vocal organ is nonlinear, it is sensible to explore how much of that complexity is due to the neural instructions controlling the vocal organ, and how much to its nonlinear nature. In this work we first review some of the work carried out in the last years to address this problem, and then we discuss the existence of noisy sound sources in the avian vocal organ. We show that some spectral features of the song produced by the Zebra finch (one of the most widely studied species) can only be explained when vortex sound is taken into account. © 2017 IOP Publishing Ltd and SISSA Medialab srl.

Registro:

Documento: Artículo
Título:Avian vocal production beyond low dimensional models
Autor:Mindlin, G.B.
Filiación:Physics Department, University of Buenos Aires, Buenos Aires, Argentina
Palabras clave:computational biology
Año:2017
Volumen:2017
Número:2
DOI: http://dx.doi.org/10.1088/1742-5468/aa54d8
Título revista:Journal of Statistical Mechanics: Theory and Experiment
Título revista abreviado:J. Stat. Mech. Theory Exp.
ISSN:17425468
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17425468_v2017_n2_p_Mindlin

Referencias:

  • Chiel, H.J., Beer, R.D., The brain has a body: Adaptive behavior emerges from interactions of nervous system, body and environment (1997) Trends Neurosci., 20, pp. 553-557
  • Laje, R., Mindlin, G.B., (2005) The Physics of Birdsong, , (Berlin: Springer)
  • Goller, F., Riede, T., Integrative physiology of fundamental frequency control in birds (2013) J. Physiol., 107, pp. 230-242
  • Ishizaka, K., Flanagan, J.L., Synthesis of voiced sounds from a two-mass model of the vocal cords (1972) Bell Syst. Tech. J., 51, pp. 1233-1268
  • Lucero, J.C., Koenig, L.L., Phonation thresholds as a function of laryngeal size in a two-mass model of the vocal folds (2005) J. Acoust. Soc. Am., 118, pp. 2798-2801
  • Lucero, J.C., Koenig, L.L., Lourenço, K.G., Ruty, N., Pelorson, X., A lumped mucosal wave model of the vocal folds revisited: Recent extensions and oscillation hysteresis (2011) J. Acoust. Soc. Am., 129, pp. 1568-1579
  • Titze, I.R., The physics of small-amplitude oscillation of the vocal folds, 1988 (1988) J. Acoust. Soc. Am., 83, pp. 1536-1552
  • Sitt, J.D., Amador, A., Goller, F., Mindlin, G.B., Dynamical origin of spectrally rich vocalizations in birdsong (2008) Phys. Rev., 78
  • Goller, F., Suthers, R.A., Role of syringeal muscles in controlling the phonology of bird song (1996) J. Neurophysiol., 76, pp. 287-300
  • Goller, F., Suthers, R.A., Role of syringeal muscles in gating airflow and sound production in singing brown thrashers (1996) J. Neurophysiol., 75, pp. 867-876
  • Mindlin, G.B., Gardner, T.J., Goller, F., Suthers, R., Experimental support for a model of birdsong production (2003) Phys. Rev., 68
  • Amador, A., Goller, F., Mindlin, G.B., Frequency modulation during song in a suboscine does not require vocal muscles (2008) J. Neurophysiol., 99, pp. 2383-2389
  • Perl, Y.S., Arneodo, E.M., Amador, A., Goller, F., Mindlin, G.B., Reconstruction of physiological instructions from Zebra finch song (2008) Phys. Rev., 84
  • Margoliash, D., Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow (1983) J. Neurosci., 3, pp. 1039-1057
  • Amador, A., Perl, Y.S., Mindlin, G.B., Margoliash, D., Elemental gesture dynamics are encoded by song premotor cortical neurons (2013) Nature, 495, pp. 59-64
  • Gardner, T., Cecchi, G., Magnasco, M., Laje, R., Mindlin, G.B., Simple motor gestures for birdsongs (2001) Phys. Rev. Lett., 87
  • Riede, T., Suthers, R.A., Fletcher, N.H., Blevins, W.E., Songbirds tune their vocal tract to the fundamental frequency of their song (2006) Proc. Natl Acad. Sci., 103, pp. 5543-5548
  • Blake, W.K., (1986) Mechanics of Flow Induced Sound and Vibrations, , (San Diego, CA: Academic)
  • Howe, M.S., (2003) Theory of Vortex Sound, 33. , vol (Cambridge: Cambridge University Press)
  • Arneodo, E.M., Perl, Y.S., Goller, F., Mindlin, G.B., Prosthetic avian vocal organ controlled by a freely behaving bird based on a low dimensional model of the biomechanical periphery (2012) PLoS Comput. Biol., 8, p. e1002546
  • Krane, M.H., Aeroacoustic production of low frequency unvoiced speech sounds (2005) J. Acoust. Soc. Am., 118, pp. 410-427
  • Villermaux, E., Hopfinger, E.J., Self-sustained oscillations of a confined jet: A case study for the non-linear delayed saturation model (1994) Physica, 72, pp. 230-243

Citas:

---------- APA ----------
(2017) . Avian vocal production beyond low dimensional models. Journal of Statistical Mechanics: Theory and Experiment, 2017(2).
http://dx.doi.org/10.1088/1742-5468/aa54d8
---------- CHICAGO ----------
Mindlin, G.B. "Avian vocal production beyond low dimensional models" . Journal of Statistical Mechanics: Theory and Experiment 2017, no. 2 (2017).
http://dx.doi.org/10.1088/1742-5468/aa54d8
---------- MLA ----------
Mindlin, G.B. "Avian vocal production beyond low dimensional models" . Journal of Statistical Mechanics: Theory and Experiment, vol. 2017, no. 2, 2017.
http://dx.doi.org/10.1088/1742-5468/aa54d8
---------- VANCOUVER ----------
Mindlin, G.B. Avian vocal production beyond low dimensional models. J. Stat. Mech. Theory Exp. 2017;2017(2).
http://dx.doi.org/10.1088/1742-5468/aa54d8