Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Many patients under therapy with recombinant human erythropoietin (rhuEPO) show resistance to the treatment, an effect likely associated with the accumulation of tissue factors, especially in renal and cardiovascular diseases. Hyperhomocysteinemia due to high serum levels of homocysteine has been suggested among the risk factors in those pathologies. Its main effect is the N-homocysteinylation of proteins due to the interaction between the highly reactive homocysteine thiolactone (HTL) and lysine residues. The aim of this study was to evaluate the effect of N-homocysteinylation on the erythropoietic and antiapoptotic abilities of EPO, which can be a consequence of structural changes in the modified protein. We found that both cellular functions were altered in the presence of HTL-EPO. A decreased net positive charge of HTL-EPO was detected by capillary zone electrophoresis, while analysis of polyacrylamide gel electropherograms suggested formation of aggregates. Far-UV spectra, obtained by Circular Dichroism Spectroscopy, indicated a switch of the protein's secondary structure from α-helix to β-sheet structures. Results of Congo red and Thioflavin T assays confirm the formation of repetitive β-sheet structures, which may account for aggregates. Accordingly, Dynamic Light Scattering analysis showed a markedly larger radius of the HTL-EPO structures, supporting the formation of soluble oligomers. These structural changes might interfere with the conformational adaptations necessary for efficient ligand-receptor interaction, thus affecting the proliferative and antiapoptotic functions of EPO. The present findings may contribute to explain the resistance exhibited by patients with cardio-renal syndrome to treatment with rhuEPO, as a consequence of structural modifications due to protein N-homocysteinylation. © 2018 Federation of European Biochemical Societies

Registro:

Documento: Artículo
Título:Modification of erythropoietin structure by N-homocysteinylation affects its antiapoptotic and proliferative functions
Autor:Schiappacasse, A.; Maltaneri, R.E.; Chamorro, M.E.; Nesse, A.B.; Wetzler, D.E.; Vittori, D.C.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Palabras clave:erythropoietin; erythropoietin resistance; hyperhomocysteinemia; N-homocysteinylation; protein structure; congo red; erythropoietin; lysine; n homocysteine thiolactonyl retinamido cobalamin; oligomer; polyacrylamide gel; thioflavine; alpha helix; Article; beta sheet; capillary zone electrophoresis; cardiorenal syndrome; cell aggregation; cell function; cell proliferation; circular dichroism; conformational transition; controlled study; electrophoretic mobility; eryptosis; erythropoiesis; human; human cell; n homocysteinylation; photon correlation spectroscopy; priority journal; protein interaction; protein modification; protein secondary structure; protein structure; ultraviolet spectroscopy
Año:2018
Volumen:285
Número:20
Página de inicio:3801
Página de fin:3814
DOI: http://dx.doi.org/10.1111/febs.14632
Título revista:FEBS Journal
Título revista abreviado:FEBS J.
ISSN:1742464X
CODEN:FJEOA
CAS:congo red, 573-58-0, 80701-77-5; erythropoietin, 11096-26-7; lysine, 56-87-1, 6899-06-5, 70-54-2; thioflavine, 2390-54-7
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1742464X_v285_n20_p3801_Schiappacasse

Referencias:

  • Abe, M., Okada, K., Maruyama, T., Matsumoto, K., Soma, M., Relationship between erythropoietin responsiveness, insulin resistance, and malnutrition inflammation-atherosclerosis (MIA) syndrome in hemodialysis patients with diabetes (2011) Int J Artif Organs, 34, pp. 16-25. , &
  • Garimella, P., Katz, R., Patel, K., Kritchevsky, S., Parikh, C., Ix, J., Fried, L.F., Harris, T.B., Association of serum erythropoietin with cardiovascular events, kidney function decline, and mortality: the health aging and body composition study (2016) Circ Heart Fail, 9
  • Grote Beverborg, N., van der Wal, H., Klip, I., Voors, A., de Boer, R., van Gilst, W., van Veldhuisen, D.J., van der Harst, P., High serum erythropoietin levels are related to heart failure development in subjects from the general population with albuminuria: data from PREVEND (2016) Eur J Heart Fail, 18, pp. 814-821
  • Nangaku, M., Mimura, I., Yamaguchi, J., Higashijima, Y., Wada, T., Tanaka, T., Role of uremic toxins in erythropoiesis-stimulating agent resistance in chronic kidney disease and dialysis patients (2015) J Renal Nutr, 25, pp. 160-163. , &
  • Jourde-Chiche, N., Dou, L., Cerini, C., Dignat-George, F., Brunet, P., Vascular incompetence in dialysis patients. Protein-bound uremic toxins and endothelial dysfunction (2011) Semin Dial, 24, pp. 327-337. , &
  • Friedman, A.N., Bostom, A.G., Selhub, J., Levey, A.S., Rosenberg, I.H., The kidney and homocysteine metabolism (2001) J Am Soc Nephrol, 12, pp. 2181-2189. , &
  • Potter, K., Hankey, G.J., Green, D.J., Eikelboom, J.W., Arnolda, L.F., Homocysteine or renal impairment. Which is the real cardiovascular risk factor? (2008) Arterioscler Thromb Vasc Biol, 28, pp. 1158-1164. , &
  • Mallamaci, F., Bonanno, G., Seminara, G., Rapisarda, F., Fatuzzo, P., Candela, V., Scudo, P., Tripepi, G., Hyperhomocysteinemia predicts cardiovascular outcomes in hemodialysis patients (2002) Kidney Int, 61, pp. 609-614
  • Perna, A.F., Ingrosso, D., Lombardi, C., Acanfora, F., Satta, E., Cesare, C.M., Violetti, E., De Santo, N.G., Possible mechanisms of homocysteine toxicity (2003) Kidney Int, 84, pp. S137-S140. , &
  • Jakubowski, H., Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels (1999) FASEB J, 13, pp. 2277-2283
  • Jakubowski, H., Molecular basis of homocysteine toxicity in humans (2004) Cell Mol Life Sci, 61, pp. 470-487
  • Jakubowski, H., Metabolism of homocysteine thiolactone in human cell cultures. Possible mechanism for pathological consequences of elevated homocysteine levels (1997) J Biol Chem, 272, pp. 1935-1942
  • Paoli, P., Sbrana, F., Tiribilli, B., Caselli, A., Pantera, B., Cirri, P., De Donatis, A., Manao, G., Protein N-homocysteinylation induces the formation of toxic amyloid-like protofibrils (2010) J Mol Biol, 400, pp. 889-907
  • Glowacki, R., Jakubowski, H., Cross-talk between Cys34 and lysine residues in human serum albumin revealed by N-Homocysteinylation (2004) J Biol Chem, 279, pp. 10864-10871. , &
  • Jalili, S., Yousefi, R., Papari, M.-M., Moosavi-Movahevi, A., Effect of homocysteine thiolactone on structure and aggregation propensy of bovine pancreatic insulin (2011) Protein J, 30, pp. 299-307. , &
  • Stroylova, Y., Zimny, J., Yousefi, R., Chobert, J.-M., Jakubowski, H., Muronetz, V., Haertlé, T., Aggregation and structural changes of αS1-, β- and κ-caseins induced by homocysteinylation (2011) Biochim Biophys Acta, 1814, pp. 1234-1245. , &
  • Sharma, G.S., Kumar, T., Singh, L.R., N-homocysteinylation induces different structural and functional consequences in acidic and basic proteins (2014) PLoS ONE, 9. , &
  • Khodadadi, S., Riazi, G.H., Ahmadian, S., Hoveizi, E., Karima, O., Aryapour, H., Effect of N-homocysteinylation on physicochemical and cytotoxic properties of amyloid β-peptide (2012) FEBS Lett, 586, pp. 127-131. , &
  • Chamorro, M.E., Wenker, S.D., Vota, D.M., Vittori, D.C., Nesse, A.B., Signaling pathways of cell proliferation are involved in the differential effect of erythropoietin and its carbamylated derivative (2013) Biochim Biophys Acta, 1833, pp. 1960-1968. , &
  • Chamorro, M.E., Maltaneri, R.E., Vittori, D.C., Nesse, A.B., Protein tyrosine phosphatase 1B (PTP1B) is involved in the defective erythropoietic function of carbamylated erythropoietin (2015) Int J Biochem Cell Biol, 61, pp. 63-71. , &
  • Deechongkit, S., Aoki, K.H., Park, S.S., Kerwin, B.A., Biophysical comparability of the same protein from different manufacturers: a case study using Epoetin alfa from Epogen and Eprex (2006) J Pharm Sci, 95, pp. 1931-1943. , &
  • Wetzler, D.E., Castano, E.M., de Prat-Gay, G., A quasi-spontaneous amyloid route in a DNA binding gene regulatory domain: the papillomavirus HPV16 E2 protein (2007) Protein Sci, 16, pp. 744-754. , &
  • Lawrence de Koning, A.B., Werstuck, G.H., Zhou, J., Austin, R.C., Hyperhomocysteinemia and its role in the development of atherosclerosis (2003) Clin Biochem, 36, pp. 431-441. , &
  • den Heijer, M., Koster, T., Blom, H.J., Bos, G.M., Briet, E., Reitsma, P.H., Vandenbroucke, J.P., Rosendaal, F.R., Hyperhomocysteinemia as a risk factor for deep-vein thrombosis (1996) N Engl J Med, 334, pp. 759-762. , &
  • van Guldener, C., Why is homocysteine elevated in renal failure and what can be expected from homocysteine-lowering? (2006) Nephrol Dial Transplant, 21, pp. 1161-1166
  • Doherty, G.H., Homocysteine and Parkinson's disease: a complex relationship (2013) J Neurol Disord, 1, p. 107
  • Morris, M.S., Homocysteine and Alzheimer's disease (2003) Lancet Neurol, 2, pp. 425-428
  • Perna, A.F., Satta, E., Acanfora, F., Lombardi, C., Ingrosso, D., De Santo, N.G., Increased plasma protein homocysteinylation in hemodialysis patients (2006) Kidney Int, 69, pp. 869-876. , &
  • Rui, T., Feng, Q., Lei, M., Peng, T., Zhang, J., Xu, M., Abel, E.D., Kvietys, P.R., Erythropoietin prevents the acute myocardial inflammatory response induced by ischemia/reperfusion via induction of AP-1 (2004) Cardiovasc Res, 65, pp. 719-727. , &
  • Noguchi, C.T., Asavaritikrai, P., Teng, R., Jia, Y., Role of erythropoietin in the brain (2007) Clin Rev Oncol Hematol, 64, pp. 159-171. , &
  • Sauls, D.L., Lockhart, E., Warren, M.E., Lenkowski, A., Wilhelm, S.E., Hoffman, M., Modification of fibrinogen by homocysteine thiolactone increases resistance to fibrinolysis: a potential mechanism of the thrombotic tendency in hyperhomocysteinemia (2006) Biochemistry, 45, pp. 2480-2487. , &
  • Lah, J., Prislan, I., Krzan, B., Salobir, M., Francky, A., Vesnaver, G., Erythropoietin unfolding: thermodynamics and its correlation with structural features (2005) Biochemistry, 44, pp. 13883-13892. , &
  • Cheetham, J.C., Smith, D.M., Aoki, K.H., Stevenson, J.L., Hoeffel, T.J., Syed, R.S., Egrie, J., Harvey, T.S., NMR structure of human erythropoietin and a comparison with its receptor bound conformation (1998) Nat Struct Biol, 5, pp. 861-866. , &
  • Chen, Y.R., Glabe, C.G., Distinct early folding and aggregation properties of Alzheimer amyloid-beta peptide Abeta40 and Abeta42: stable trimer or tetramer formation by Abeta42 (2006) J Biol Chem, 34, pp. 24414-24422. , &
  • Lindgren, M., Sorgjerd, K., Hammarstrom, P., Detection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy (2005) Biophys J, 88, pp. 4200-4212. , &
  • Kelly, J.W., Alternative conformations of amyloidogenic proteins govern their behavior (1996) Curr Opin Struct Biol, 6, pp. 11-17
  • Smal, C., Alonso, L.G., Wetzler, D., Heer, A., Prat Gay, G., Ordered self-assembly mechanism of a spherical oncoprotein oligomer triggered by zinc removal and stabilized by an intrinsically disordered domain (2012) PLoS ONE, 7. , &
  • Ecroyd, H., Carver, J.A., Crystallin proteins and amyloid fibrils (2009) Cell Mol Life Sci, 66, pp. 62-81. , &
  • Bitan, G., Kirkitadze, M.D., Lomakin, A., Vollers, S.S., Benedek, G.B., Teplow, D.B., Amyloid beta-protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways (2003) Proc Natl Acad Sci USA, 100, pp. 330-335. , &
  • Kumar, T., Sharma, G.S., Singh, L.R., Homocysteinuria: therapeutic approach (2016) Clin Chim Acta, 458, pp. 55-62. , &
  • Sengupta, U., Nilson, A.N., Kayed, R., The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy (2016) EBioMedicine, 6, pp. 42-49. , &
  • Sharma, G.S., Kumar, T., Dar, T.A., Singh, L.R., Protein N-homocysteinylation: from cellular toxicity to neurodegeneration (2015) Biochim Biophys Acta, 1850, pp. 2239-2245. , &
  • Vittori, D., Pregi, N., Pérez, G., Garbossa, G., Nesse, A., The distinct erythropoietin functions that promote cell survival and proliferation are affected by aluminum exposure through mechanisms involving erythropoietin receptor (2005) Biochim Biophys Acta, 1743, pp. 29-36. , &
  • Vittori, D., Vota, D., Callero, M., Chamorro, M.E., Nesse, A., c-FLIP is involved in erythropoietin-mediated protection of erythroid-differentiated cells from TNF-α-induced apoptosis (2010) Cell Biol Int, 34, pp. 621-630. , &
  • Mack, S., Cruzado-Park, I.D., Ratnayake, C.K., P-12582A Establishing cIEF Separation Conditions for Highly Acidic Proteins, , https://ls.beckmancoulter.co.jp/files/downloads/PA800plus/P-12582A.pdf, &, Discovery Products, Beckman Coulter, Inc., Fullerton, CA

Citas:

---------- APA ----------
Schiappacasse, A., Maltaneri, R.E., Chamorro, M.E., Nesse, A.B., Wetzler, D.E. & Vittori, D.C. (2018) . Modification of erythropoietin structure by N-homocysteinylation affects its antiapoptotic and proliferative functions. FEBS Journal, 285(20), 3801-3814.
http://dx.doi.org/10.1111/febs.14632
---------- CHICAGO ----------
Schiappacasse, A., Maltaneri, R.E., Chamorro, M.E., Nesse, A.B., Wetzler, D.E., Vittori, D.C. "Modification of erythropoietin structure by N-homocysteinylation affects its antiapoptotic and proliferative functions" . FEBS Journal 285, no. 20 (2018) : 3801-3814.
http://dx.doi.org/10.1111/febs.14632
---------- MLA ----------
Schiappacasse, A., Maltaneri, R.E., Chamorro, M.E., Nesse, A.B., Wetzler, D.E., Vittori, D.C. "Modification of erythropoietin structure by N-homocysteinylation affects its antiapoptotic and proliferative functions" . FEBS Journal, vol. 285, no. 20, 2018, pp. 3801-3814.
http://dx.doi.org/10.1111/febs.14632
---------- VANCOUVER ----------
Schiappacasse, A., Maltaneri, R.E., Chamorro, M.E., Nesse, A.B., Wetzler, D.E., Vittori, D.C. Modification of erythropoietin structure by N-homocysteinylation affects its antiapoptotic and proliferative functions. FEBS J. 2018;285(20):3801-3814.
http://dx.doi.org/10.1111/febs.14632