Artículo

Pesce, A.; Bustamante, J.P.; Bidon-Chanal, A.; Boechi, L.; Estrin, D.A.; Luque, F.J.; Sebilo, A.; Guertin, M.; Bolognesi, M.; Ascenzi, P.; Nardini, M. "The N-terminal pre-A region of Mycobacterium tuberculosis 2/2HbN promotes NO-dioxygenase activity" (2016) FEBS Journal. 283(2):305-322
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A unique defense mechanisms by which Mycobacterium tuberculosis protects itself from nitrosative stress is based on the O2-dependent NO-dioxygenase (NOD) activity of truncated hemoglobin 2/2HbN (Mt2/2HbN). The NOD activity largely depends on the efficiency of ligand migration to the heme cavity through a two-tunnel (long and short) system; recently, it was also correlated with the presence at the Mt2/2HbN N-terminus of a short pre-A region, not conserved in most 2/2HbNs, whose deletion results in a drastic reduction of NO scavenging. In the present study, we report the crystal structure of Mt2/2HbN-ΔpreA, lacking the pre-A region, at a resolution of 1.53 Å. We show that removal of the pre-A region results in long range effects on the protein C-terminus, promoting the assembly of a stable dimer, both in the crystals and in solution. In the Mt2/2HbN-ΔpreA dimer, access of heme ligands to the short tunnel is hindered. Molecular dynamics simulations show that the long tunnel branch is the only accessible pathway for O2-ligand migration to/from the heme, and that the gating residue Phe(62)E15 partly restricts the diameter of the tunnel. Accordingly, kinetic measurements indicate that the kon value for peroxynitrite isomerization by Mt2/2HbN-ΔpreA-Fe(III) is four-fold lower relative to the full-length protein, and that NO scavenging by Mt2/2HbN-ΔpreA-Fe(II)-O2 is reduced by 35-fold. Therefore, we speculate that Mt2/2HbN evolved to host the pre-A region as a mechanism for preventing dimerization, thus reinforcing the survival of the microorganism against the reactive nitrosative stress in macrophages. Database Coordinates and structure factors have been deposited in the Protein Data Bank under accession number 5AB8. Removal of the pre-A region in M. tuberculosis 2/2HbN (Mt2/2HbN-ΔpreA) results in dimerization and in a reduced access to the heme pocket. Kinetic measurements indicate a 4-fold decrease in kon for peroxynitrite isomerization and a 35-fold decrease in NO-scavenging relative to full-length Mt2/2HbN. Thus, the pre-A region might be involved in reinforcing survival of the microorganism against nitrosative stress in macrophages. © 2015 FEBS.

Registro:

Documento: Artículo
Título:The N-terminal pre-A region of Mycobacterium tuberculosis 2/2HbN promotes NO-dioxygenase activity
Autor:Pesce, A.; Bustamante, J.P.; Bidon-Chanal, A.; Boechi, L.; Estrin, D.A.; Luque, F.J.; Sebilo, A.; Guertin, M.; Bolognesi, M.; Ascenzi, P.; Nardini, M.
Filiación:Department of Physics, University of Genova, Italy
Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina
Departament de Fisicoquímica, Institut de Biomedicina (IBUB), Facultat de Farmàcia, University of Barcelona, Santa Coloma de Gramenet, Spain
Department of Biochemistry, Microbiology and Bioinformatics, Laval UniversityQC, Canada
Department of Biosciences, University of Milano, Milano, I-20133, Italy
CNR-IBF, CIMAINA, University of Milan, Italy
Interdepartmental Laboratory of Electron Microscopy, Roma Tre University, Rome, Italy
National Institute of Biostructures and Biosystems, Rome, Italy
Palabras clave:2/2 hemoglobins; globin dynamics; heme/ligand tunneling; NO dioxygenase; truncated hemoglobins; bacterial protein; dioxygenase; heme; nitric oxide; peroxynitrous acid; truncated hemoglobin; chemistry; genetics; kinetics; metabolism; molecular dynamics; mutation; Mycobacterium tuberculosis; protein conformation; protein multimerization; X ray crystallography; Bacterial Proteins; Crystallography, X-Ray; Dioxygenases; Heme; Kinetics; Molecular Dynamics Simulation; Mutation; Mycobacterium tuberculosis; Nitric Oxide; Peroxynitrous Acid; Protein Conformation; Protein Multimerization; Truncated Hemoglobins
Año:2016
Volumen:283
Número:2
Página de inicio:305
Página de fin:322
DOI: http://dx.doi.org/10.1111/febs.13571
Título revista:FEBS Journal
Título revista abreviado:FEBS J.
ISSN:1742464X
CODEN:FJEOA
CAS:dioxygenase, 37292-90-3; heme, 14875-96-8; nitric oxide, 10102-43-9; peroxynitrous acid, 14691-52-2; Bacterial Proteins; Dioxygenases; Heme; Nitric Oxide; Peroxynitrous Acid; Truncated Hemoglobins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1742464X_v283_n2_p305_Pesce

Referencias:

  • Wittenberg, J.B., Bolognesi, M., Wittenberg, B.A., Guertin, M., Truncated hemoglobins: A new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants (2002) J Biol Chem, 277, pp. 871-874
  • Vuletich, D.A., Lecomte, J.T., A phylogenetic and structural analysis of truncated hemoglobins (2006) J Mol Evol, 62, pp. 196-210
  • Nardini, M., Pesce, A., Milani, M., Bolognesi, M., Protein fold and structure in the truncated (2/2) globin family (2007) Gene, 398, pp. 2-11
  • Vinogradov, S.N., Tinajero-Trejo, M., Poole, R.K., Hoogewijs, D., Bacterial and archaeal globins - A revised perspective (2013) Biochim Biophys Acta, 1834, pp. 1789-1800
  • Perutz, M.F., Regulation of oxygen affinity of hemoglobin: Influence of structure of the globin on the heme iron (1979) Annu Rev Biochem, 48, pp. 327-386
  • Pesce, A., Couture, M., Dewilde, S., Guertin, M., Yamauchi, K., Ascenzi, P., Moens, L., Bolognesi, M., A novel two-over-two alpha-helical sandwich fold is characteristic of the truncated hemoglobin family (2000) EMBO J, 19, pp. 2424-2434
  • Pesce, A., Bolognesi, M., Nardini, M., The diversity of 2/2 (truncated) globins (2013) Adv Microb Physiol, 63, pp. 49-78
  • Milani, M., Savard, P.Y., Ouellet, H., Ascenzi, P., Guertin, M., Bolognesi, M., A TyrCD1/TrpG8 hydrogen bond network and a TyrB10TyrCD1 covalent link shape the heme distal site of Mycobacterium tuberculosis hemoglobin O (2003) Proc Natl Acad Sci USA, 100, pp. 5766-5771
  • Nardini, M., Pesce, A., Labarre, M., Richard, C., Bolli, A., Ascenzi, P., Guertin, M., Bolognesi, M., Structural determinants in the group III truncated hemoglobin from Campylobacter jejuni (2006) J Biol Chem, 281, pp. 37803-37812
  • Couture, M., Yeh, S.R., Wittenberg, B.A., Wittenberg, J.B., Ouellet, Y., Rousseau, D.L., Guertin, M., A cooperative oxygen-binding hemoglobin from Mycobacterium tuberculosis (1999) Proc Natl Acad Sci USA, 96, pp. 11223-11228
  • Ouellet, H., Ouellet, Y., Richard, C., Labarre, M., Wittenberg, B., Wittenberg, J., Guertin, M., Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide (2002) Proc Natl Acad Sci USA, 99, pp. 5902-5907
  • Vinogradov, S.N., Moens, L., Diversity of globin function: Enzymatic, transport, storage, and sensing (2008) J Biol Chem, 283, pp. 8773-8777
  • Nicoletti, F.P., Comandini, A., Bonamore, A., Boechi, L., Boubeta, F.M., Feis, A., Smulevich, G., Boffi, A., Sulfide binding properties of truncated hemoglobins (2010) Biochemistry, 49, pp. 2269-2278
  • Parrilli, E., Giuliani, M., Giordano, D., Russo, R., Marino, G., Verde, C., Tutino, M.L., The role of a 2-on-2 haemoglobin in oxidative and nitrosative stress resistance of Antarctic Pseudoalteromonas haloplanktis TAC125 (2010) Biochimie, 92, pp. 1003-1009
  • Scott, N.L., Xu, Y., Shen, G., Vuletich, D.A., Falzone, C.J., Li, Z., Ludwig, M., Bryant, D.A., Functional and structural characterization of the 2/2 hemoglobin from Synechococcus sp. PCC 7002 (2010) Biochemistry, 49, pp. 7000-7011
  • Vinogradov, S.N., Hoogewijs, D., Bailly, X., Arredondo-Peter, R., Gough, J., Dewilde, S., Moens, L., Vanfleteren, J.R., A phylogenomic profile of globins (2006) BMC Evol Biol, 6, pp. 31-47
  • MacMicking, J.D., North, R.J., LaCourse, R., Mudgett, J.S., Shah, S.K., Nathan, C.F., Identification of nitric oxide synthase as a protective locus against tuberculosis (1997) Proc Natl Acad Sci USA, 94, pp. 5243-5248
  • Nathan, C., Shiloh, M.U., Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens (2000) Proc Natl Acad Sci USA, 97, pp. 8841-8848
  • Cooper, A.M., Adams, L.B., Dalton, D.K., Appelberg, R., Ehlers, S., IFN-gamma and NO in mycobacterial disease: New jobs for old hands (2002) Trends Microbiol, 10, pp. 221-226
  • Visca, P., Fabozzi, G., Milani, M., Bolognesi, M., Ascenzi, P., Nitric oxide and Mycobacterium leprae pathogenicity (2002) IUBMB Life, 54, pp. 95-99
  • Ohno, H., Zhu, G., Mohan, V.P., Chu, D., Kohno, S., Jacobs, W.R., Jr., Chan, J., The effects of reactive nitrogen intermediates on gene expression in Mycobacterium tuberculosis (2003) Cell Microbiol, 5, pp. 637-648
  • Schnappinger, D., Schoolnik, G.K., Ehrt, S., Expression profiling of host pathogen interactions: How Mycobacterium tuberculosis and the macrophage adapt to one another (2006) Microbes Infect, 8, pp. 1132-1140
  • Pathania, R., Navani, N.K., Gardner, A.M., Gardner, P.R., Dikshit, K.L., Nitric oxide scavenging and detoxification by the Mycobacterium tuberculosis haemoglobin HbN in Escherichia coli (2002) Mol Microbiol, 45, pp. 1303-1314
  • Pawaria, S., Rajamohan, G., Gambhir, V., Lama, A., Varshney, G.C., Dikshit, K.L., Intracellular growth and survival of Salmonella enterica serovar Typhimurium carrying truncated hemoglobins of Mycobacterium tuberculosis (2007) Microb Pathog, 42, pp. 119-128
  • Gardner, P.R., Hemoglobin: A nitric-oxide dioxygenase (2012) Scientifica, , ID 683729
  • Milani, M., Pesce, A., Ouellet, Y., Ascenzi, P., Guertin, M., Bolognesi, M., Mycobacterium tuberculosis hemoglobin N displays a protein tunnel suited for O2 diffusion to the heme (2001) EMBO J, 20, pp. 3902-3909
  • Bidon-Chanal, A., Crespo, A., Milani, M., Orozco, M., Bolognesi, M., Luque, F.J., Estrin, D.A., Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N (2006) Proteins, 64, pp. 457-464
  • Daigle, R., Guertin, M., Lagüe, P., Structural characterization of the tunnels of Mycobacterium tuberculosis truncated haemoglobin N from molecular dynamics simulations (2009) Proteins, 75, pp. 735-747
  • Lama, A., Pawaria, S., Bidon-Chanal, A., Anand, A., Gelpí, J.L., Arya, S., Martí, M., Dikshit, K.L., Role of Pre-A motif in nitric oxide scavenging by truncated hemoglobin, HbN, of Mycobacterium tuberculosis (2009) J Biol Chem, 284, pp. 14457-14468
  • Yeh, S.R., Couture, M., Ouellet, Y., Guertin, M., Rousseau, D.L., A cooperative oxygen binding hemoglobin from Mycobacterium tuberculosis. Stabilization of heme ligands by a distal tyrosine residue (2000) J Biol Chem, 275, pp. 1679-1684
  • Milani, M., Ouellet, Y., Ouellet, H., Guertin, M., Boffi, A., Antonini, G., Bocedi, A., Ascenzi, P., Cyanide binding to truncated hemoglobins: A crystallographic and kinetic study (2004) Biochemistry, 43, pp. 5213-5221
  • Ouellet, Y., Milani, M., Couture, M., Bolognesi, M., Guertin, M., Ligand interactions in the distal heme pocket of Mycobacterium tuberculosis truncated hemoglobin N: Roles of TyrB10 and GlnE11 residues (2006) Biochemistry, 45, pp. 8770-8781
  • Ouellet, Y.H., Daigle, R., Lagüe, P., Dantsker, D., Milani, M., Bolognesi, M., Friedman, J.M., Guertin, M., Ligand binding to truncated hemoglobin N from Mycobacterium tuberculosis is strongly modulated by the interplay between the distal heme pocket residues and internal water (2008) J Biol Chem, 283, pp. 27270-27278
  • Milani, M., Pesce, A., Ouellet, Y., Dewilde, S., Friedman, J., Ascenzi, P., Guertin, M., Bolognesi, M., Heme-ligand tunneling in group i truncated hemoglobins (2004) J Biol Chem, 279, pp. 21520-21525
  • Pesce, A., Milani, M., Nardini, M., Bolognesi, M., Mapping heme-ligand tunnels in group i truncated(2/2) hemoglobins (2008) Methods Enzymol, 436, pp. 303-315
  • Saam, J., Rosini, E., Molla, G., Schulten, K., Pollegioni, L., Ghisla, S., O2-reactivity of flavoproteins: Dynamic access of dioxygen to the active site and role of a H+ relay system in d-amino acid oxidase (2010) J Biol Chem, 285, pp. 24439-24446
  • Oliveira, A.S., Damas, J.M., Baptista, A.M., Soares, C.M., Exploring O2 diffusion in A-type cytochrome c oxidases: Molecular dynamics simulations uncover two alternative channels towards the binuclear site (2014) PLoS Comput Biol, 10, p. e1004010
  • Wang, P.-H., Best, R.B., Blumberger, J., Multiscale simulation reveals multiple pathways for H2 and O2 transport in a [NiFe]-hydrogenase (2011) J Am Chem Soc, 133, pp. 3548-3556
  • Brunori, M., Gibson, Q.H., Cavities and packing defects in the structural dynamics of myoglobin (2001) EMBO Rep, 2, pp. 674-679
  • Regmi, C.K., Bhandari, Y.R., Gerstman, B.S., Chapagain, P.P., Exploring the diffusion of molecular oxygen in the red fluorescent protein mCherry using explicit oxygen molecular dynamics simulations (2013) J Phys Chem B, 117, pp. 2247-2253
  • Daigle, R., Rousseau, J.A., Guertin, M., Lagüe, P., Theoretical investigations of nitric oxide channeling in Mycobacterium tuberculosis truncated hemoglobin N (2009) Biophys J, 97, pp. 2967-2977
  • Savard, P.-Y., Daigle, R., Morin, S., Sebilo, A., Meindre, F., Lagüe, P., Guertin, M., Gagné, S.M., Structure and dynamics of Mycobacterium tuberculosis truncated hemoglobin N: Insights from NMR spectroscopy and molecular dynamics simulations (2011) Biochemistry, 50, pp. 11121-11130
  • Boron, I., Bustamante, J.P., Davidge, K.S., Singh, S., Forti, F., Bowman, L.A.H., Tinajero-Trejo, M., Estrin, D.A., Ligand uptake by M. Tuberculosis truncated hemoglobin N is modulated by both two tunnels and retained water molecules (2015) F1000Res, 4, p. 22
  • Crespo, A., Martì, M.A., Kalko, S.G., Morreale, A., Orozco, M., Gelpi, J.L., Luque, F.J., Estrin, D.A., Theoretical study of the truncated hemoglobin HbN: Exploring the molecular basis of the NO detoxification mechanism (2005) J Am Chem Soc, 127, pp. 4433-4444
  • Bidon-Chanal, A., Martì, M.A., Estrin, D.A., Luque, F.J., Dynamical regulation of ligand migration by a gate-opening molecular switch in truncated hemoglobin-N from Mycobacterium tuberculosis (2007) J Am Chem Soc, 129, pp. 6782-6788
  • Mishra, S., Meuwly, M., Nitric oxide dynamics in truncated hemoglobin: Docking sites, migration pathways, and vibrational spectroscopy from molecular dynamics simulations (2009) Biophys J, 96, pp. 2105-2118
  • Oliveira, A., Singh, S., Bidon-Chanal, A., Forti, F., Martì, M.A., Boechi, L., Estrin, D.A., Luque, F.J., Role of PheE15 gate in ligand entry and nitric oxide detoxification function of Mycobacterium tuberculosis truncated hemoglobin N (2012) PLoS One, 7, p. e49291
  • Singh, S., Thakur, N., Oliveira, A., Petruk, A.A., Hade, M.D., Sethi, D., Bidon-Chanal, A., Parkesh, R., Mechanistic insight into the enzymatic reduction of truncated hemoglobin N of Mycobacterium tuberculosis: Role of the CD loop and pre-A motif in electron cycling (2014) J Biol Chem, 289, pp. 21573-21583
  • Krissinel, E., Henrick, K., Detection of protein assemblies in crystals (2005) Computational Life Science, pp. 163-174. , (Berthold M.R. et al., eds). CompLife Springer-Verlag, Berlin, Heidelberg
  • Reeder, B.J., Hough, M.A., The structure of a class 3 nonsymbiotic plant haemoglobin from Arabidopsis thaliana reveals a novel N-terminal helical extension (2014) Acta Crystallogr D, 70, pp. 1411-1418
  • Ascenzi, P., Coletta, A., Cao, Y., Trezza, V., Leboffe, L., Fanali, G., Fasano, M., Marini, S., Isoniazid inhibits the heme-based reactivity of Mycobacterium tuberculosis truncated hemoglobin N (2013) PLoS One, 8, p. e69762
  • Pfeiffer, S., Gorren, A.C., Schmidt, K., Werner, E.R., Hansert, B., Bohle, D.S., Mayer, B., Metabolic fate of peroxynitrite in aqueous solution: Reaction with nitric oxide and pH-dependent decomposition to nitrite and oxygen in a 2:1 stoichiometry (1997) J Biol Chem, 272, pp. 3465-3470
  • Herold, S., Kalinga, S., Metmyoglobin and methemoglobin catalyze the isomerization of peroxynitrite to nitrate (2003) Biochemistry, 42, pp. 14036-14046
  • Herold, S., Kalinga, S., Matsui, T., Watanabe, Y., Mechanistic studies of the isomerization of peroxynitrite to nitrate catalyzed by distal histidine metmyoglobin mutants (2004) J Am Chem Soc, 126, pp. 6945-6955
  • Goldstein, S., Lind, J., Merényi, G., Chemistry of peroxynitrites as compared to peroxynitrates (2005) Chem Rev, 105, pp. 2457-2470
  • Mehl, M., Daiber, A., Herold, S., Shoun, H., Ullrich, V., Peroxynitrite reaction with heme proteins (1999) Nitric Oxide, 3, pp. 142-152
  • Ascenzi, P., Di Masi, A., Coletta, M., Ciaccio, C., Fanali, G., Nicoletti, F.P., Smulevich, G., Fasano, M., Ibuprofen impairs allosterically peroxynitrite isomerization by ferric human serum heme-albumin (2009) J Biol Chem, 284, pp. 31006-31017
  • Ascenzi, P., Ciaccio, C., Sinibaldi, F., Santucci, R., Coletta, M., Cardiolipin modulates allosterically peroxynitrite detoxification by horse heart cytochrome c (2011) Biochem Biophys Res Commun, 404, pp. 190-194
  • Ascenzi, P., Ciaccio, C., Sinibaldi, F., Santucci, R., Coletta, M., Peroxynitrite detoxification by horse heart carboxymethylated cytochrome c is allosterically modulated by cardiolipin (2011) Biochem Biophys Res Commun, 415, pp. 463-467
  • Di Masi, A., Gullotta, F., Bolli, A., Fanali, G., Fasano, M., Ascenzi, P., Ibuprofen binding to secondary sites allosterically modulates the spectroscopic and catalytic properties of human serum heme-albumin (2011) FEBS J, 278, pp. 654-662
  • Coppola, D., Giordano, D., Tinajero-Trejo, M., Di Prisco, G., Ascenzi, P., Poole, R.K., Verde, C., Antarctic bacterial hemeoglobin and its role in the protection against nitrogen reactive species (2013) Biochim Biophys Acta, 1834, pp. 1923-1931
  • Ascenzi, P., Leboffe, L., Pesce, A., Ciaccio, C., Sbardella, D., Bolognesi, M., Coletta, M., Nitrite-reductase and peroxynitrite isomerization activities of Methanosarcina acetivorans protoglobin (2014) PLoS One, 9, p. e95391
  • Gardner, A.M., Martin, L.A., Gardner, P.R., Dou, Y., Olson, J.S., Steady-state and transient kinetics of Escherichia coli nitric-oxide dioxygenase (flavohemoglobin). The B10 tyrosine hydroxyl is essential for dioxygen binding and catalysis (2000) J Biol Chem, 275, pp. 12581-12589
  • Herold, S., Exner, M., Nauser, T., Kinetic and mechanistic studies of the NO•-mediated oxidation of oxymyoglobin and oxyhemoglobin (2001) Biochemistry, 40, pp. 3385-3395
  • Ouellet, H., Juszczak, L., Dantsker, D., Samuni, U., Ouellet, Y.H., Savard, P.Y., Wittenberg, J.B., Guertin, M., Reactions of Mycobacterium tuberculosis truncated hemoglobin O with ligands reveal a novel ligand-inclusive hydrogen bond network (2003) Biochemistry, 42, pp. 5764-5774
  • Brunori, M., Giuffrè, A., Nienhaus, K., Nienhaus, G.U., Scandurra, F.M., Vallone, B., Neuroglobin, nitric oxide, and oxygen: Functional pathways and conformational changes (2005) Proc Natl Acad Sci USA, 102, pp. 8483-8488
  • Ascenzi, P., Bocedi, A., Bolognesi, M., Fabozzi, G., Milani, M., Visca, P., Nitric oxide scavenging by Mycobacterium leprae GlbO involves the formation of the ferric heme-bound peroxynitrite intermediate (2006) Biochem Biophys Res Commun, 339, pp. 448-454
  • Mukai, M., Mills, C.E., Poole, R.K., Yeh, S.R., Flavohemoglobin, a globin with a peroxidase-like catalytic site (2001) J Biol Chem, 276, pp. 7272-7277
  • Målen, H., Pathak, S., Søfteland, T., De Souza, G.A., Wiker, H.G., Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv (2010) BMC Microbiol, 10, pp. 132-143
  • Arya, S., Sethi, D., Singh, S., Hade, M.D., Singh, V., Raju, P., Chodisetti, S.B., Agrewala, J.N., Truncated hemoglobin, HbN, is post-translationally modified in Mycobacterium tuberculosis and modulates host-pathogen interactions during intracellular infection (2013) J Biol Chem, 288, pp. 29987-29999
  • Rhéault, J.-F., Gagné, È., Guertin, M., Lamoureux, G., Auger, M., Lagüe, P., Molecular model of hemoglobin N from Mycobacterium tuberculosis bound to lipid bilayers: A combined spectroscopic and computational study (2015) Biochemistry, 54, pp. 2073-2084
  • Leslie, A.G.M., (2003) MOSFLM User Guide, Mosflm Version 6.2.3, , MRC Laboratory of Molecular Biology, Cambridge, UK
  • Evans, P., Scaling and assessment of data quality (2006) Acta Crystallogr D, 62, pp. 72-82
  • Storoni, L.C., McCoy, A.J., Read, R.J., Likelihood-enhanced fast rotation functions (2004) Acta Crystallogr D, 60, pp. 432-438
  • Emsley, P., Cowtan, K., Coot: Model-building tools for molecular graphics (2004) Acta Crystallogr D, 60, pp. 2126-2132
  • Murshudov, G.N., Vagin, A.A., Dodson, E.J., Refinement of macromolecular structures by the maximum-likelihood method (1997) Acta Crystallogr D, 53, pp. 240-255
  • Chen, V.B., Arendall, W.B., III, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, D.C., MolProbity: All-atom structure validation for macromolecular crystallography (2010) Acta Crystallogr D, 66, pp. 12-21
  • Laskowski, R.A., SURFNET: A program for visualizing molecular surfaces, cavities and intermolecular interactions (1995) J Mol Graph, 13, pp. 323-330
  • Case, D.A., Darden, T.A., Cheatham, T.E., III, Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Merz, K.M., (2012) AMBER 12, , University of California, San Francisco
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., Comparison of multiple Amber force fields and development of improved protein backbone parameters (2006) Proteins, 65, pp. 712-725
  • Capece, L., Boechi, L., Perissinotti, L.L., Arroyo-Mañez, P., Bikiel, D.E., Smulevich, G., Martì, M.A., Estrin, D.A., Small ligand-globin interactions: Reviewing lessons derived from computer simulation (2013) Biochim Biophys Acta, 1834, pp. 1722-1738
  • Martì, M.A., Capece, L., Bidon-Chanal, A., Crespo, A., Guallar, V., Luque, F.J., Estrin, D.A., NO reactivity with globins as investigated through computer simulation (2008) Methods Enzymol, 437, pp. 477-498
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J Chem Phys, 79, pp. 926-935
  • Ryckaert, J.-P., Ciccotti, G., Berendsen, H.J.C., Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes (1977) J Comput Phys, 23, pp. 327-341
  • Wu, X., Brooks, B.R., Self-guided Langevin dynamics simulation method (2003) Chem Phys Lett, 381, pp. 512-518
  • Darden, T., York, D., Pedersen, L., Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems (1993) J Chem Phys, 98, pp. 10089-10092
  • Cohen, J., Olsen, K.W., Schulten, K., Finding gas migration pathways in proteins using implicit ligand sampling (2008) Methods Enzymol, 437, pp. 439-457
  • Forti, F., Boechi, L., Estrin, D.A., Martì, M.A., Comparing and combining implicit ligand sampling with multiple steered molecular dynamics to study ligand migration processes in heme proteins (2011) J Comp Chem, 32, pp. 2219-2231
  • Arroyo-Máñez, P., Bikiel, D.E., Boechi, L., Capece, L., Di Lella, S., Estrín, D.A., Martí, M.A., Petruk, A.A., Protein dynamics and ligand migration as studied by computer simulation (2011) Biochim Biophys Acta, 1814, pp. 1054-1064
  • Abbruzzetti, S., Spyrakis, F., Bidon-Chanal, A., Luque, F.J., Viappiani, C., Ligand migration through hemeprotein cavities: Insigths from laser flash photolysis and molecular dynamics simulations (2013) Phys Chem Chem Phys, 15, pp. 10686-10701
  • Antonini, E., Brunori, M., (1971) Hemoglobin and Myoglobin in Their Reactions with Ligands, , North Holland Publishing Co., Amsterdam

Citas:

---------- APA ----------
Pesce, A., Bustamante, J.P., Bidon-Chanal, A., Boechi, L., Estrin, D.A., Luque, F.J., Sebilo, A.,..., Nardini, M. (2016) . The N-terminal pre-A region of Mycobacterium tuberculosis 2/2HbN promotes NO-dioxygenase activity. FEBS Journal, 283(2), 305-322.
http://dx.doi.org/10.1111/febs.13571
---------- CHICAGO ----------
Pesce, A., Bustamante, J.P., Bidon-Chanal, A., Boechi, L., Estrin, D.A., Luque, F.J., et al. "The N-terminal pre-A region of Mycobacterium tuberculosis 2/2HbN promotes NO-dioxygenase activity" . FEBS Journal 283, no. 2 (2016) : 305-322.
http://dx.doi.org/10.1111/febs.13571
---------- MLA ----------
Pesce, A., Bustamante, J.P., Bidon-Chanal, A., Boechi, L., Estrin, D.A., Luque, F.J., et al. "The N-terminal pre-A region of Mycobacterium tuberculosis 2/2HbN promotes NO-dioxygenase activity" . FEBS Journal, vol. 283, no. 2, 2016, pp. 305-322.
http://dx.doi.org/10.1111/febs.13571
---------- VANCOUVER ----------
Pesce, A., Bustamante, J.P., Bidon-Chanal, A., Boechi, L., Estrin, D.A., Luque, F.J., et al. The N-terminal pre-A region of Mycobacterium tuberculosis 2/2HbN promotes NO-dioxygenase activity. FEBS J. 2016;283(2):305-322.
http://dx.doi.org/10.1111/febs.13571