Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The TPM domain constitutes a family of recently characterized protein domains that are present in most living organisms. Although some progress has been made in understanding the cellular role of TPM-containing proteins, the relationship between structure and function is not clear yet. We have recently solved the solution and crystal structure of one TPM domain (BA42) from the Antarctic bacterium Bizionia argentinensis. In this work, we demonstrate that BA42 has phosphoric-monoester hydrolase activity. The activity of BA42 is strictly dependent on the binding of divalent metals and retains nearly 70% of the maximum at 4 °C, a typical characteristic of cold-adapted enzymes. From HSQC, 15N relaxation measurements, and molecular dynamics studies, we determine that the flexibility of the crossing loops was associated to the protein activity. Thermal unfolding experiments showed that the local increment in flexibility of Mg2+-bound BA42, when compared with Ca2+-bound BA42, is associated to a decrease in global protein stability. Finally, through mutagenesis experiments, we unambiguously demonstrate that the region comprising the metal-binding site participates in the catalytic mechanism. The results shown here contribute to the understanding of the relationship between structure and function of this new family of TPM domains providing important cues on the regulatory role of Mg2+ and Ca2+ and the molecular mechanism underlying enzyme activity at low temperatures. © 2016 Federation of European Biochemical Societies

Registro:

Documento: Artículo
Título:Structural and functional characterization of a cold-adapted stand-alone TPM domain reveals a relationship between dynamics and phosphatase activity
Autor:Pellizza, L.A.; Smal, C.; Ithuralde, R.E.; Turjanski, A.G.; Cicero, D.O.; Arán, M.
Filiación:Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma ‘Tor Vergata’, Italy
Palabras clave:Antarctic bacteria; Bizionia argentinensis; nuclear magnetic resonance; phosphatase activity; structural genomics; TPM domain; calcium ion; magnesium ion; phosphatase; bacterial protein; calcium; divalent cation; magnesium; metal; phosphatase; protein binding; Article; carboxy terminal sequence; conformational transition; enzyme active site; enzyme activity; enzyme binding; enzyme mechanism; heteronuclear single quantum coherence; limit of quantitation; low temperature; molecular dynamics; nitrogen nuclear magnetic resonance; nonhuman; priority journal; protein unfolding; adaptation; amino acid sequence; Antarctica; binding site; chemistry; cold; enzyme stability; enzymology; Flavobacteriaceae; genetics; kinetics; metabolism; molecular model; mutation; nuclear magnetic resonance spectroscopy; pH; protein domain; sequence homology; structure activity relation; Adaptation, Physiological; Amino Acid Sequence; Antarctic Regions; Bacterial Proteins; Binding Sites; Calcium; Cations, Divalent; Cold Temperature; Enzyme Stability; Flavobacteriaceae; Hydrogen-Ion Concentration; Kinetics; Magnesium; Magnetic Resonance Spectroscopy; Metals; Models, Molecular; Mutation; Phosphoric Monoester Hydrolases; Protein Binding; Protein Domains; Sequence Homology, Amino Acid; Structure-Activity Relationship
Año:2016
Volumen:283
Número:23
Página de inicio:4370
Página de fin:4385
DOI: http://dx.doi.org/10.1111/febs.13929
Título revista:FEBS Journal
Título revista abreviado:FEBS J.
ISSN:1742464X
CODEN:FJEOA
CAS:calcium ion, 14127-61-8; magnesium ion, 22537-22-0; phosphatase, 9013-05-2; calcium, 7440-70-2, 14092-94-5; magnesium, 7439-95-4; Bacterial Proteins; Calcium; Cations, Divalent; Magnesium; Metals; Phosphoric Monoester Hydrolases
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1742464X_v283_n23_p4370_Pellizza

Referencias:

  • Wegener, K.M., Bennewitz, S., Oelmuller, R., Pakrasi, H.B., The Psb32 protein aids in repairing photodamaged photosystem II in the cyanobacterium Synechocystis 6803 (2011) Mol Plant, 4, pp. 1052-1061
  • Wu, H.Y., Liu, M.S., Lin, T.P., Cheng, Y.S., Structural and functional assays of AtTLP18.3 identify its novel acid phosphatase activity in thylakoid lumen (2011) Plant Physiol, 157, pp. 1015-1025
  • Eletsky, A., Acton, T.B., Xiao, R., Everett, J.K., Montelione, G.T., Szyperski, T., Solution NMR structures reveal a distinct architecture and provide first structures for protein domain family PF04536 (2012) J Struct Funct Genomics, 13, pp. 9-14
  • Aran, M., Smal, C., Pellizza, L., Gallo, M., Otero, L.H., Klinke, S., Goldbaum, F.A., Mac Cormack, W.P., Solution and crystal structure of BA42, a protein from the Antarctic bacterium Bizionia argentinensis comprised of a stand-alone TPM domain (2014) Proteins, 82, pp. 3062-3078
  • Sirpio, S., Allahverdiyeva, Y., Suorsa, M., Paakkarinen, V., Vainonen, J., Battchikova, N., Aro, E.M., TLP18.3, a novel thylakoid lumen protein regulating photosystem II repair cycle (2007) Biochem J, 406, pp. 415-425
  • Boulin, T., Rapti, G., Briseno-Roa, L., Stigloher, C., Richmond, J.E., Paoletti, P., Bessereau, J.L., Positive modulation of a Cys-loop acetylcholine receptor by an auxiliary transmembrane subunit (2012) Nat Neurosci, 15, pp. 1374-1381
  • Sinha, A., Eniyan, K., Sinha, S., Lynn, A.M., Bajpai, U., Functional analysis of TPM domain containing Rv2345 of Mycobacterium tuberculosis identifies its phosphatase activity (2015) Protein Expr Purif, 111, pp. 23-27
  • Stark, J.L., Copeland, J.C., Eletsky, A., Somerville, G.A., Szyperski, T., Powers, R., Identification of low-molecular-weight compounds inhibiting growth of corynebacteria: potential lead compounds for antibiotics (2014) ChemMedChem, 9, pp. 282-285
  • D'Amico, S., Sohier, J.S., Feller, G., Kinetics and energetics of ligand binding determined by microcalorimetry: insights into active site mobility in a psychrophilic alpha-amylase (2006) J Mol Biol, 358, pp. 1296-1304
  • Tsigos, I., Velonia, K., Smonou, I., Bouriotis, V., Purification and characterization of an alcohol dehydrogenase from the Antarctic psychrophile Moraxella sp. TAE123 (1998) Eur J Biochem, 254, pp. 356-362
  • Hsu, F., Mao, Y., The structure of phosphoinositide phosphatases: insights into substrate specificity and catalysis (2015) Biochim Biophys Acta, 1851, pp. 698-710
  • Seifried, A., Schultz, J., Gohla, A., Human HAD phosphatases: structure, mechanism, and roles in health and disease (2013) FEBS J, 280, pp. 549-571
  • Holm, L., Sander, C., Touring protein fold space with Dali/FSSP (1998) Nucleic Acids Res, 26, pp. 316-319
  • Kawabata, T., MATRAS: a program for protein 3D structure comparison (2003) Nucleic Acids Res, 31, pp. 3367-3369
  • Dougherty, W.G., Carrington, J.C., Cary, S.M., Parks, T.D., Biochemical and mutational analysis of a plant virus polyprotein cleavage site (1988) EMBO J, 7, pp. 1281-1287
  • Feller, G., Gerday, C., Psychrophilic enzymes: hot topics in cold adaptation (2003) Nat Rev Microbiol, 1, pp. 200-208
  • Huang, H., Pandya, C., Liu, C., Al-Obaidi, N.F., Wang, M., Zheng, L., Toews Keating, S., Evans, B., Panoramic view of a superfamily of phosphatases through substrate profiling (2015) Proc Natl Acad Sci USA, 112, pp. E1974-E1983
  • Khachane, A.N., Timmis, K.N., dos Santos, V.A., Uracil content of 16S rRNA of thermophilic and psychrophilic prokaryotes correlates inversely with their optimal growth temperatures (2005) Nucleic Acids Res, 33, pp. 4016-4022
  • Russell, N.J., Psychrophilic bacteria–molecular adaptations of membrane lipids (1997) Comp Biochem Physiol A Physiol, 118, pp. 489-493
  • Feller, G., Life at low temperatures: is disorder the driving force? (2007) Extremophiles, 11, pp. 211-216
  • Scheeff, E.D., Bourne, P.E., Structural evolution of the protein kinase-like superfamily (2005) PLoS Comput Biol, 1
  • Taylor, S.S., Radzio-Andzelm, E., Three protein kinase structures define a common motif (1994) Structure, 2, pp. 345-355
  • Fagerbakke, K.M., Norland, S., Heldal, M., The inorganic ion content of native aquatic bacteria (1999) Can J Microbiol, 45, pp. 304-311
  • Heldal, M., Norland, S., Erichsen, E.S., Sandaa, R.A., Larsen, A., Thingstad, F., Bratbak, G., Mg2+ as an indicator of nutritional status in marine bacteria (2012) ISME J, 6, pp. 524-530
  • Eibl, H., Lands, W.E., A new, sensitive determination of phosphate (1969) Anal Biochem, 30, pp. 51-57
  • Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J., Bax, A., NMRPipe: a multidimensional spectral processing system based on UNIX pipes (1995) J Biomol NMR, 6, pp. 277-293
  • Johnson, B.A., Using NMRView to visualize and analyze the NMR spectra of macromolecules (2004) Methods Mol Biol, 278, pp. 313-352
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., Comparison of multiple Amber force fields and development of improved protein backbone parameters (2006) Proteins, 65, pp. 712-725
  • Cerutti, D.S., Swope, W.C., Rice, J.E., Case, D.A., ff14ipq: a self-consistent force field for condensed-phase simulations of proteins (2014) J Chem Theory Comput, 10, pp. 4515-4534
  • Price, D.J., Brooks, C.L., 3rd, A modified TIP3P water potential for simulation with Ewald summation (2004) J Chem Phys, 121, pp. 10096-10103
  • van Gunsteren, W.F., Berendsen, H.J., Computer simulation as a tool for tracing the conformational differences between proteins in solution and in the crystalline state (1984) J Mol Biol, 176, pp. 559-564
  • Smith, W., Forester, T.R., DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package (1996) J Mol Graph, 14, pp. 136-141
  • Darden, T.A., Pedersen, L.G., Molecular modeling: an experimental tool (1993) Environ Health Perspect, 101, pp. 410-412
  • Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J Mol Graph, 14, pp. 33–38, 27–38

Citas:

---------- APA ----------
Pellizza, L.A., Smal, C., Ithuralde, R.E., Turjanski, A.G., Cicero, D.O. & Arán, M. (2016) . Structural and functional characterization of a cold-adapted stand-alone TPM domain reveals a relationship between dynamics and phosphatase activity. FEBS Journal, 283(23), 4370-4385.
http://dx.doi.org/10.1111/febs.13929
---------- CHICAGO ----------
Pellizza, L.A., Smal, C., Ithuralde, R.E., Turjanski, A.G., Cicero, D.O., Arán, M. "Structural and functional characterization of a cold-adapted stand-alone TPM domain reveals a relationship between dynamics and phosphatase activity" . FEBS Journal 283, no. 23 (2016) : 4370-4385.
http://dx.doi.org/10.1111/febs.13929
---------- MLA ----------
Pellizza, L.A., Smal, C., Ithuralde, R.E., Turjanski, A.G., Cicero, D.O., Arán, M. "Structural and functional characterization of a cold-adapted stand-alone TPM domain reveals a relationship between dynamics and phosphatase activity" . FEBS Journal, vol. 283, no. 23, 2016, pp. 4370-4385.
http://dx.doi.org/10.1111/febs.13929
---------- VANCOUVER ----------
Pellizza, L.A., Smal, C., Ithuralde, R.E., Turjanski, A.G., Cicero, D.O., Arán, M. Structural and functional characterization of a cold-adapted stand-alone TPM domain reveals a relationship between dynamics and phosphatase activity. FEBS J. 2016;283(23):4370-4385.
http://dx.doi.org/10.1111/febs.13929