Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

2-Cys peroxiredoxins are peroxidases devoid of prosthetic groups that mediate in the defence against oxidative stress and the peroxide activation of signaling pathways. This dual capacity relies on the high reactivity of the conserved peroxidatic and resolving cysteines, whose modification embraces not only the usual thiol-disulfide exchange but also higher oxidation states of the sulfur atom. These changes are part of a complex system wherein the cooperation with other post-translational modifications - phosphorylation, acetylation - may function as major regulatory mechanisms of the quaternary structure. More importantly, modern proteomic approaches have identified the oxyacids at cysteine residues as novel protein targets for unsuspected post-translational modifications, such as phosphorylation that yields the unusual sulfi(o)nic-phosphoryl anhydride. In this article, we review the biochemical attributes of 2-Cys peroxiredoxins that, in combination with complementary studies of forward and reverse genetics, have generated stimulating molecular models to explain how this enzyme integrates into cell signaling in vivo. © 2009 FEBS.

Registro:

Documento: Artículo
Título:Typical 2-Cys peroxiredoxins - Modulation by covalent transformations and noncovalent interactions
Autor:Aran, M.; Ferrero, D.S.; Pagano, E.; Wolosiuk, R.A.
Filiación:Instituto Leloir, IIBBA-CONICET, Universidad de Buenos Aires, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
Instituto Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Catedra de Bioquimica, Facultad de Agronomia, Universidad de Buenos Aires, Argentina
Palabras clave:2-Cys peroxiredoxin; ATP binding; Autophosphorylation; Molecular chaperone; Oligomerization; Overoxidation; Oxidative stress; Peroxidase mechanism; Sulfenic acid; Sulfinic-phosphoryl anhydride; cysteine; disulfide; peroxidase; peroxide; peroxiredoxin; thiol; acetylation; covalent bond; molecular interaction; molecular model; nonhuman; oligomerization; oxidation; oxidative stress; priority journal; protein phosphorylation; protein processing; protein quaternary structure; protein targeting; proteomics; regulatory mechanism; review; signal transduction; Animals; Cysteine; Humans; Molecular Chaperones; Oxidation-Reduction; Oxidative Stress; Peroxidases; Peroxiredoxins; Phosphorylation; Protein Processing, Post-Translational; Sulfenic Acids
Año:2009
Volumen:276
Número:9
Página de inicio:2478
Página de fin:2493
DOI: http://dx.doi.org/10.1111/j.1742-4658.2009.06984.x
Título revista:FEBS Journal
Título revista abreviado:FEBS J.
ISSN:1742464X
CAS:cysteine, 4371-52-2, 52-89-1, 52-90-4; disulfide, 16734-12-6; peroxidase, 9003-99-0; peroxide, 14915-07-2; Cysteine, 52-90-4; Molecular Chaperones; Peroxidases, 1.11.1.-; Peroxiredoxins, 1.11.1.15; Sulfenic Acids
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1742464X_v276_n9_p2478_Aran

Referencias:

  • Buchanan, B.B., Wolosiuk, R.A., Schurmann, P., Thioredoxin and enzyme regulation (1979) Trends Biochem Sci, 4, pp. 93-96
  • Cooper, C.E., Patel, R.P., Brookes, P.S., Darley-Usmar, V.M., Nanotransducers in cellular redox signaling: Modification of thiols by reactive oxygen and nitrogen species (2002) Trends Biochem Sci, 27, pp. 489-492
  • Allen, J.F., Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes (1993) J Theor Biol, 165, pp. 609-631
  • Paget, M.S., Buttner, M.J., Thiol-based regulatory switches (2003) Annu Rev Genet, 37, pp. 91-121
  • Neill, S., Desikan, R., Hancock, J., Hydrogen peroxide signalling (2002) Curr Opin Plant Biol, 5, pp. 388-395
  • Zhou, Y., Wan, X.Y., Wang, H.L., Yan, Z.Y., Hou, Y.D., Jin, D.Y., Bacterial scavengase p20 is structurally and functionally related to peroxiredoxins (1997) Biochem Biophys Res Commun, 233, pp. 848-852
  • Park, S.G., Cha, M.K., Jeong, W., Kim, I.H., Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae (2000) J Biol Chem, 275, pp. 5723-5732
  • Zhou, Y., Kok, K.H., Chun, A.C., Wong, C.M., Wu, H.W., Lin, M.C., Fung, P.C., Jin, D.Y., Mouse peroxiredoxin v is a thioredoxin peroxidase that inhibits p53-induced apoptosis (2000) Biochem Biophys Res Commun, 268, pp. 921-927
  • Seo, M.S., Kang, S.W., Kim, K., Baines, I.C., Lee, T.H., Rhee, S.G., Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate (2000) J Biol Chem, 275, pp. 20346-20354
  • Dietz, K.J., Horling, F., Konig, J., Baier, M., The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation (2002) J Exp Bot, 53, pp. 1321-1329
  • Trivelli, X., Krimm, I., Ebel, C., Verdoucq, L., Prouzet-Mauleon, V., Chartier, Y., Tsan, P., Lancelin, J.M., Characterization of the yeast peroxiredoxin Ahp1 in its reduced active and overoxidized inactive forms using NMR (2003) Biochemistry, 42, pp. 14139-14149
  • Knoops, B., Loumaye, E., Van Der Eecken, V., Evolution of the peroxiredoxins (2007) Subcell Biochem, 44, pp. 27-40
  • Loumaye, E., Andersen, A.C., Clippe, A., Degand, H., Dubuisson, M., Zal, F., Morsomme, P., Knoops, B., Cloning and characterization of Arenicola marina peroxiredoxin 6, an annelid two-cysteine peroxiredoxin highly homologous to mammalian one-cysteine peroxiredoxins (2008) Free Radic Biol Med, 45, pp. 482-493
  • Copley, S.D., Novak, W.R., Babbitt, P.C., Divergence of function in the thioredoxin fold suprafamily: Evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor (2004) Biochemistry, 43, pp. 13981-13995
  • Flohe, L., Harris, J.R., Introduction. History of the peroxiredoxins and topical perspectives (2007) Subcell Biochem, 44, pp. 1-25
  • Hirotsu, S., Abe, Y., Okada, K., Nagahara, N., Hori, H., Nishino, T., Hakoshima, T., Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa-proliferation-associated gene product (1999) Proc Natl Acad Sci USA, 96, pp. 12333-12338
  • Sarma, G.N., Nickel, C., Rahlfs, S., Fischer, M., Becker, K., Karplus, P.A., Crystal structure of a novel Plasmodium falciparum 1-Cys peroxiredoxin (2005) J Mol Biol, 346, pp. 1021-1034
  • Hall, A., Karplus, P.A., Poole, L.B., Typical 2-Cys peroxiredoxins - Structures, mechanisms and functions (2009) FEBS J, 276. , doi:
  • Lee, W., Choi, K.S., Riddell, J., Ip, C., Ghosh, D., Park, J.H., Park, Y.M., Human peroxiredoxin 1 and 2 are not duplicate proteins: The unique presence of CYS83 in Prx1 underscores the structural and functional differences between Prx1 and Prx2 (2007) J Biol Chem, 282, pp. 22011-22022
  • Jang, H.H., Kim, S.Y., Park, S.K., Jeon, H.S., Lee, Y.M., Jung, J.H., Lee, S.Y., Lee, K.O., Phosphorylation and concomitant structural changes in human 2-Cys peroxiredoxin isotype i differentially regulate its peroxidase and molecular chaperone functions (2006) FEBS Lett, 580, pp. 351-355
  • Konig, J., Lotte, K., Plessow, R., Brockhinke, A., Baier, M., Dietz, K.J., Reaction mechanism of plant 2-Cys peroxiredoxin. Role of the C terminus and the quaternary structure (2003) J Biol Chem, 278, pp. 24409-24420
  • Parsonage, D., Youngblood, D.S., Sarma, G.N., Wood, Z.A., Karplus, P.A., Poole, L.B., Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin (2005) Biochemistry, 44, pp. 10583-10592
  • Matsumura, T., Okamoto, K., Iwahara, S., Hori, H., Takahashi, Y., Nishino, T., Abe, Y., Dimer-oligomer interconversion of wild-type and mutant rat 2-Cys peroxiredoxin: Disulfide formation at dimer-dimer interfaces is not essential for decamerization (2008) J Biol Chem, 283, pp. 284-293
  • Barranco-Medina, S., Kakorin, S., Lazaro, J.J., Dietz, K.J., Thermodynamics of the dimer-decamer transition of reduced human and plant 2-cys peroxiredoxin (2008) Biochemistry, 47, pp. 7196-7204
  • Cao, Z., Bhella, D., Lindsay, J.G., Reconstitution of the mitochondrial PrxIII antioxidant defence pathway: General properties and factors affecting PrxIII activity and oligomeric state (2007) J Mol Biol, 372, pp. 1022-1033
  • Jang, H.H., Lee, K.O., Chi, Y.H., Jung, B.G., Park, S.K., Park, J.H., Lee, J.R., Yun, J.W., Two enzymes in one; Two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function (2004) Cell, 117, pp. 625-635
  • Meissner, U., Schroder, E., Scheffler, D., Martin, A.G., Harris, J.R., Formation, TEM study and 3D reconstruction of the human erythrocyte peroxiredoxin-2 dodecahedral higher-order assembly (2007) Micron, 38, pp. 29-39
  • Gourlay, L.J., Bhella, D., Kelly, S.M., Price, N.C., Lindsay, J.G., Structure-function analysis of recombinant substrate protein 22 kDa (SP-22). A mitochondrial 2-Cys peroxiredoxin organized as a decameric toroid (2003) J Biol Chem, 278, pp. 32631-32637
  • Cao, Z., Roszak, A.W., Gourlay, L.J., Lindsay, J.G., Isaacs, N.W., Bovine mitochondrial peroxiredoxin III forms a two-ring catenane (2005) Structure, 13, pp. 1661-1664
  • Guimaraes, B.G., Souchon, H., Honore, N., Saint-Joanis, B., Brosch, R., Shepard, W., Cole, S.T., Alzari, P.M., Structure and mechanism of the alkyl hydroperoxidase AhpC, a key element of the Mycobacterium tuberculosis defense system against oxidative stress (2005) J Biol Chem, 280, pp. 25735-25742
  • Kemp, M., Go, Y.M., Jones, D.P., Nonequilibrium thermodynamics of thiol-disulfide redox systems: A perspective on redox systems biology (2008) Free Radic Biol Med, 44, pp. 921-937
  • Wood, Z.A., Schroder, E., Robin Harris, J., Poole, L.B., Structure, mechanism and regulation of peroxiredoxins (2003) Trends Biochem Sci, 28, pp. 32-40
  • Wood, Z.A., Poole, L.B., Hantgan, R.R., Karplus, P.A., Dimers to doughnuts: Redox-sensitive oligomerization of 2-cysteine peroxiredoxins (2002) Biochemistry, 41, pp. 5493-5504
  • Schroder, E., Littlechild, J.A., Lebedev, A.A., Errington, N., Vagin, A.A., Isupov, M.N., Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 Å resolution (2000) Structure, 8, pp. 605-615
  • Rabilloud, T., Heller, M., Gasnier, F., Luche, S., Rey, C., Aebersold, R., Benahmed, M., Lunardi, J., Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site (2002) J Biol Chem, 277, pp. 19396-19401
  • Wagner, E., Luche, S., Penna, L., Chevallet, M., Van Dorsselaer, A., Leize-Wagner, E., Rabilloud, T., A method for detection of overoxidation of cysteines: Peroxiredoxins are oxidized in vivo at the active-site cysteine during oxidative stress (2002) Biochem J, 366, pp. 777-785
  • Immenschuh, S., Baumgart-Vogt, E., Peroxiredoxins, oxidative stress, and cell proliferation (2005) Antioxid Redox Signal, 7, pp. 768-777
  • Dietz, K.J., Jacob, S., Oelze, M.L., Laxa, M., Tognetti, V., De Miranda, S.M., Baier, M., Finkemeier, I., The function of peroxiredoxins in plant organelle redox metabolism (2006) J Exp Bot, 57, pp. 1697-1709
  • Konig, J., Baier, M., Horling, F., Kahmann, U., Harris, G., Schurmann, P., Dietz, K.J., The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux (2002) Proc Natl Acad Sci USA, 99, pp. 5738-5743
  • Foyer, C.H., Noctor, G., Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses (2005) Plant Cell, 17, pp. 1866-1875
  • Phalen, T.J., Weirather, K., Deming, P.B., Anathy, V., Howe, A.K., Van Der Vliet, A., Jonsson, T.J., Heintz, N.H., Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery (2006) J Cell Biol, 175, pp. 779-789
  • Jr R., S.F., Knutson, S.T., Poole, L.B., Fetrow, J.S., Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid (2008) Protein Sci, 17, pp. 299-312
  • Nakamura, T., Yamamoto, T., Abe, M., Matsumura, H., Hagihara, Y., Goto, T., Yamaguchi, T., Inoue, T., Oxidation of archaeal peroxiredoxin involves a hypervalent sulfur intermediate (2008) Proc Natl Acad Sci USA, 105, pp. 6238-6242
  • Ogusucu, R., Rettori, D., Munhoz, D.C., Netto, L.E., Augusto, O., Reactions of yeast thioredoxin peroxidases i and II with hydrogen peroxide and peroxynitrite: Rate constants by competitive kinetics (2007) Free Radic Biol Med, 42, pp. 326-334
  • Peskin, A.V., Low, F.M., Paton, L.N., Maghzal, G.J., Hampton, M.B., Winterbourn, C.C., The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents (2007) J Biol Chem, 282, pp. 11885-11892
  • Parsonage, D., Karplus, P.A., Poole, L.B., Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin (2008) Proc Natl Acad Sci USA, 105, pp. 8209-8214
  • Hughes, M.N., Chemistry of nitric oxide and related species (2008) Methods Enzymol, 436, pp. 3-19
  • Bryk, R., Griffin, P., Nathan, C., Peroxynitrite reductase activity of bacterial peroxiredoxins (2000) Nature, 407, pp. 211-215
  • Wong, C.M., Zhou, Y., Ng, R.W., Kung, H.F., Jin, D.Y., Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress (2002) J Biol Chem, 277, pp. 5385-5394
  • Dubuisson, M., Vander Stricht, D., Clippe, A., Etienne, F., Nauser, T., Kissner, R., Koppenol, W.H., Knoops, B., Human peroxiredoxin 5 is a peroxynitrite reductase (2004) FEBS Lett, 571, pp. 161-165
  • Pattison, D.I., Davies, M.J., Reactions of myeloperoxidase-derived oxidants with biological substrates: Gaining chemical insight into human inflammatory diseases (2006) Curr Med Chem, 13, pp. 3271-3290
  • Claiborne, A., Mallett, T.C., Yeh, J.I., Luba, J., Parsonage, D., Structural, redox, and mechanistic parameters for cysteine-sulfenic acid function in catalysis and regulation (2001) Adv Protein Chem, 58, pp. 215-276
  • Allison, W.S., Formation and reactions of sulfenic acids in proteins (1976) Acc Chem Res, 9, pp. 293-299
  • Kiley, P.J., Storz, G., Exploiting thiol modifications (2004) PLoS Biol, 2, p. 400
  • Chae, H.Z., Chung, S.J., Rhee, S.G., Thioredoxin-dependent peroxide reductase from yeast (1994) J Biol Chem, 269, pp. 27670-27678
  • Jara, M., Vivancos, A.P., Calvo, I.A., Moldon, A., Sanso, M., Hidalgo, E., The peroxiredoxin Tpx1 is essential as a H2O2 scavenger during aerobic growth in fission yeast (2007) Mol Biol Cell, 18, pp. 2288-2295
  • Nogoceke, E., Gommel, D.U., Kiess, M., Kalisz, H.M., Flohe, L., A unique cascade of oxidoreductases catalyses trypanothione-mediated peroxide metabolism in Crithidia fasciculata (1997) Biol Chem, 378, pp. 827-836
  • Poole, L.B., Reynolds, C.M., Wood, Z.A., Karplus, P.A., Ellis, H.R., Li Calzi, M., AhpF and other NADH:peroxiredoxin oxidoreductases, homologues of low Mr thioredoxin reductase (2000) Eur J Biochem, 267, pp. 6126-6133
  • Sayed, A.A., Williams, D.L., Biochemical characterization of 2-Cys peroxiredoxins from Schistosoma mansoni (2004) J Biol Chem, 279, pp. 26159-26166
  • Serrato, A.J., Perez-Ruiz, J.M., Spinola, M.C., Cejudo, F.J., A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana (2004) J Biol Chem, 279, pp. 43821-43827
  • Moon, J.C., Jang, H.H., Chae, H.B., Lee, J.R., Lee, S.Y., Jung, Y.J., Shin, M.R., Yun, D.J., The C-type Arabidopsis thioredoxin reductase ANTR-C acts as an electron donor to 2-Cys peroxiredoxins in chloroplasts (2006) Biochem Biophys Res Commun, 348, pp. 478-484
  • Perez-Ruiz, J.M., Spinola, M.C., Kirchsteiger, K., Moreno, J., Sahrawy, M., Cejudo, F.J., Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage (2006) Plant Cell, 18, pp. 2356-2368
  • Spinola, M.C., Perez-Ruiz, J.M., Pulido, P., Kirchsteiger, K., Guinea, M., Gonzalez, M., Cejudo, F.J., NTRC new ways of using NADPH in the chloroplast (2008) Physiol Plant, 133, pp. 516-524
  • Stenbaek, A., Hansson, A., Wulff, R.P., Hansson, M., Dietz, K.J., Jensen, P.E., NADPH-dependent thioredoxin reductase and 2-Cys peroxiredoxins are needed for the protection of Mg-protoporphyrin monomethyl ester cyclase (2008) FEBS Lett, 582, pp. 2773-2778
  • Mora-Garcia, S., Stolowicz, F., Wolosiuk, R.A., Redox signal transduction in plant metabolism (2005) Control of Primary Metabolism in Plants, , In. Vol. 22. Plaxton, W. McManus, M. eds). Blackwell Publishing. Oxford
  • Collin, V., Lamkemeyer, P., Miginiac-Maslow, M., Hirasawa, M., Knaff, D.B., Dietz, K.J., Issakidis-Bourguet, E., Characterization of plastidial thioredoxins from Arabidopsis belonging to the new y-type (2004) Plant Physiol, 136, pp. 4088-4095
  • Bernier-Villamor, L., Navarro, E., Sevilla, F., Lazaro, J.J., Cloning and characterization of a 2-Cys peroxiredoxin from Pisum sativum (2004) J Exp Bot, 55, pp. 2191-2199
  • Broin, M., Cuine, S., Eymery, F., Rey, P., The plastidic 2-cysteine peroxiredoxin is a target for a thioredoxin involved in the protection of the photosynthetic apparatus against oxidative damage (2002) Plant Cell, 14, pp. 1417-1432
  • Radyuk, S.N., Klichko, V.I., Spinola, B., Sohal, R.S., Orr, W.C., The peroxiredoxin gene family in Drosophila melanogaster (2001) Free Radic Biol Med, 31, pp. 1090-1100
  • Bauer, H., Kanzok, S.M., Schirmer, R.H., Thioredoxin-2 but not thioredoxin-1 is a substrate of thioredoxin peroxidase-1 from Drosophila melanogaster: Isolation and characterization of a second thioredoxin in D. melanogaster and evidence for distinct biological functions of Trx-1 and Trx-2 (2002) J Biol Chem, 277, pp. 17457-17463
  • Barik, S., Immunophilins: For the love of proteins (2006) Cell Mol Life Sci, 63, pp. 2889-2900
  • Jaschke, A., Mi, H., Tropschug, M., Human T cell cyclophilin 18 binds to thiol-specific antioxidant protein Aop1 and stimulates its activity (1998) J Mol Biol, 277, pp. 763-769
  • Lee, S.P., Hwang, Y.S., Kim, Y.J., Kwon, K.S., Kim, H.J., Kim, K., Chae, H.Z., Cyclophilin a binds to peroxiredoxins and activates its peroxidase activity (2001) J Biol Chem, 276, pp. 29826-29832
  • Laxa, M., Konig, J., Dietz, K.J., Kandlbinder, A., Role of the cysteine residues in Arabidopsis thaliana cyclophilin CYP20-3 in peptidyl-prolyl cis-trans isomerase and redox-related functions (2007) Biochem J, 401, pp. 287-297
  • Motohashi, K., Koyama, F., Nakanishi, Y., Ueoka-Nakanishi, H., Hisabori, T., Chloroplast cyclophilin is a target protein of thioredoxin. Thiol modulation of the peptidyl-prolyl cis-trans isomerase activity (2003) J Biol Chem, 278, pp. 31848-31852
  • Saurin, A.T., Neubert, H., Brennan, J.P., Eaton, P., Widespread sulfenic acid formation in tissues in response to hydrogen peroxide (2004) Proc Natl Acad Sci USA, 101, pp. 17982-17987
  • Yang, K.S., Kang, S.W., Woo, H.A., Hwang, S.C., Chae, H.Z., Kim, K., Rhee, S.G., Inactivation of human peroxiredoxin i during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid (2002) J Biol Chem, 277, pp. 38029-38036
  • Cordray, P., Doyle, K., Edes, K., Moos, P.J., Fitzpatrick, F.A., Oxidation of 2-Cys-peroxiredoxins by arachidonic acid peroxide metabolites of lipoxygenases and cyclooxygenase-2 (2007) J Biol Chem, 282, pp. 32623-32629
  • Wood, Z.A., Poole, L.B., Karplus, P.A., Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling (2003) Science, 300, pp. 650-653
  • Biteau, B., Labarre, J., Toledano, M.B., ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin (2003) Nature, 425, pp. 980-984
  • Jeong, W., Park, S.J., Chang, T.S., Lee, D.Y., Rhee, S.G., Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin (2006) J Biol Chem, 281, pp. 14400-14407
  • Roussel, X., Bechade, G., Kriznik, A., Van Dorsselaer, A., Sanglier-Cianferani, S., Branlant, G., Rahuel-Clermont, S., Evidence for the formation of a covalent thiosulfinate intermediate with peroxiredoxin in the catalytic mechanism of sulfiredoxin (2008) J Biol Chem, 283, pp. 22371-22382
  • Jonsson, T.J., Johnson, L.C., Lowther, W.T., Structure of the sulphiredoxin-peroxiredoxin complex reveals an essential repair embrace (2008) Nature, 451, pp. 98-101
  • Choi, M.H., Lee, I.K., Kim, G.W., Kim, B.U., Han, Y.H., Yu, D.Y., Park, H.S., Choi, C., Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II (2005) Nature, 435, pp. 347-353
  • Bozonet, S.M., Findlay, V.J., Day, A.M., Cameron, J., Veal, E.A., Morgan, B.A., Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide (2005) J Biol Chem, 280, pp. 23319-23327
  • Vivancos, A.P., Castillo, E.A., Biteau, B., Nicot, C., Ayte, J., Toledano, M.B., Hidalgo, E., A cysteine-sulfinic acid in peroxiredoxin regulates H2O 2-sensing by the antioxidant Pap1 pathway (2005) Proc Natl Acad Sci USA, 102, pp. 8875-8880
  • Papadia, S., Soriano, F.X., Leveille, F., Martel, M.A., Dakin, K.A., Hansen, H.H., Kaindl, A., Stefovska, V., Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses (2008) Nat Neurosci, 11, pp. 476-487
  • Jeffery, C.J., Moonlighting proteins (1999) Trends Biochem Sci, 24, pp. 8-11
  • Jeffery, C.J., Molecular mechanisms for multitasking: Recent crystal structures of moonlighting proteins (2004) Curr Opin Struct Biol, 14, pp. 663-668
  • Wen, S.T., Van Etten, R.A., The PAG gene product, a stress-induced protein with antioxidant properties, is an Abl SH3-binding protein and a physiological inhibitor of c-Abl tyrosine kinase activity (1997) Genes Dev, 11, pp. 2456-2467
  • Moon, J.C., Hah, Y.S., Kim, W.Y., Jung, B.G., Jang, H.H., Lee, J.R., Kim, S.Y., Kim, C.W., Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H 2O2-induced cell death (2005) J Biol Chem, 280, pp. 28775-28784
  • Chuang, M.H., Wu, M.S., Lo, W.L., Lin, J.T., Wong, C.H., Chiou, S.H., The antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches from a peroxide reductase to a molecular chaperone function (2006) Proc Natl Acad Sci USA, 103, pp. 2552-2557
  • Trotter, E.W., Rand, J.D., Vickerstaff, J., Grant, C.M., The yeast Tsa1 peroxiredoxin is a ribosome-associated antioxidant (2008) Biochem J, 412, pp. 73-80
  • Caporaletti, D., D'Alessio, A.C., Rodriguez-Suarez, R.J., Senn, A.M., Duek, P.D., Wolosiuk, R.A., Non-reductive modulation of chloroplast fructose-1,6-bisphosphatase by 2-Cys peroxiredoxin (2007) Biochem Biophys Res Commun, 355, pp. 722-727
  • Chang, T.S., Jeong, W., Choi, S.Y., Yu, S., Kang, S.W., Rhee, S.G., Regulation of peroxiredoxin i activity by Cdc2-mediated phosphorylation (2002) J Biol Chem, 277, pp. 25370-25376
  • Qu, D., Rashidian, J., Mount, M.P., Aleyasin, H., Parsanejad, M., Lira, A., Haque, E., Daigle, M., Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson's disease (2007) Neuron, 55, pp. 37-52
  • Aran, M., Caporaletti, D., Senn, A.M., Tellez De Inon, M.T., Girotti, M.R., Llera, A.S., Wolosiuk, R.A., ATP-dependent modulation and autophosphorylation of rapeseed 2-Cys peroxiredoxin (2008) Febs J, 275, pp. 1450-1463
  • Budde, H., Flohe, L., Hofmann, B., Nimtz, M., Verification of the interaction of a tryparedoxin peroxidase with tryparedoxin by ESI-MS-MS (2003) Biol Chem, 384, pp. 1305-1309
  • Jonsson, T.J., Ellis, H.R., Poole, L.B., Cysteine reactivity and thiol-disulfide interchange pathways in AhpF and AhpC of the bacterial alkyl hydroperoxide reductase system (2007) Biochemistry, 46, pp. 5709-5721
  • Hoshino, I., Matsubara, H., Hanari, N., Mori, M., Nishimori, T., Yoneyama, Y., Akutsu, Y., Seki, N., Histone deacetylase inhibitor FK228 activates tumor suppressor Prdx1 with apoptosis induction in esophageal cancer cells (2005) Clin Cancer Res, 11, pp. 7945-7952
  • Parmigiani, R.B., Xu, W.S., Venta-Perez, G., Erdjument-Bromage, H., Yaneva, M., Tempst, P., Marks, P.A., HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation (2008) Proc Natl Acad Sci USA, 105, pp. 9633-9638
  • Jaffe, E.K., Morpheeins - A new structural paradigm for allosteric regulation (2005) Trends Biochem Sci, 30, pp. 490-497
  • Majeran, W., Cai, Y., Sun, Q., Van Wijk, K.J., Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics (2005) Plant Cell, 17, pp. 3111-3140
  • Poole, L.B., Nelson, K.J., Discovering mechanisms of signaling-mediated cysteine oxidation (2008) Curr Opin Chem Biol, 12, pp. 18-24
  • Hofmann, B., Hecht, H.J., Flohe, L., Peroxiredoxins (2002) Biol Chem, 383, pp. 347-364
  • Cha, M.K., Kim, H.K., Kim, I.H., Thioredoxin-linked 'thiol peroxidase' from periplasmic space of Escherichia coli (1995) J Biol Chem, 270, pp. 28635-28641
  • Jeong, W., Cha, M.K., Kim, I.H., Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)-alkyl hydroperoxide peroxidase C (AhpC) family (2000) J Biol Chem, 275, pp. 2924-2930

Citas:

---------- APA ----------
Aran, M., Ferrero, D.S., Pagano, E. & Wolosiuk, R.A. (2009) . Typical 2-Cys peroxiredoxins - Modulation by covalent transformations and noncovalent interactions. FEBS Journal, 276(9), 2478-2493.
http://dx.doi.org/10.1111/j.1742-4658.2009.06984.x
---------- CHICAGO ----------
Aran, M., Ferrero, D.S., Pagano, E., Wolosiuk, R.A. "Typical 2-Cys peroxiredoxins - Modulation by covalent transformations and noncovalent interactions" . FEBS Journal 276, no. 9 (2009) : 2478-2493.
http://dx.doi.org/10.1111/j.1742-4658.2009.06984.x
---------- MLA ----------
Aran, M., Ferrero, D.S., Pagano, E., Wolosiuk, R.A. "Typical 2-Cys peroxiredoxins - Modulation by covalent transformations and noncovalent interactions" . FEBS Journal, vol. 276, no. 9, 2009, pp. 2478-2493.
http://dx.doi.org/10.1111/j.1742-4658.2009.06984.x
---------- VANCOUVER ----------
Aran, M., Ferrero, D.S., Pagano, E., Wolosiuk, R.A. Typical 2-Cys peroxiredoxins - Modulation by covalent transformations and noncovalent interactions. FEBS J. 2009;276(9):2478-2493.
http://dx.doi.org/10.1111/j.1742-4658.2009.06984.x