Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The focus of this study is to analyse the reliability of using small-loop frequency-domain electromagnetic induction systems for characterizing buried storage tanks and pipes at industrial plants. As examples, we selected two areas of a chemical plant, one located outdoors and the other inside a room of reduced dimensions. We collected data employing different system orientations and acquisition directions, in order to compare the influence of environmental noise and neighbouring structures on each case. We found that the presence of a metallic gate or other metallic stuff in a neighbouring wall introduces strong distortions in the responses obtained near these objects. The responses decrease when the coils are coplanar with the wall and increase when they are perpendicular to it. Noise levels were higher for the data acquired indoors, but even in this case, we could enhance the signal-to-noise ratios up to very acceptable values by applying a novel spatial filtering technique. This improved the visualization of the anomalies associated with the targets. Finally, we generated pseudo 3D electrical models of the subsoil, by combining the results of the 1D inversions of the filtered data corresponding to the configuration that best evidenced the structures buried on each sector. In both areas, we obtained quite good approximate characterizations of the geometry, conductivity and depth of the detected tanks and pipes, as was later confirmed during remediation works. Remarkably, the model obtained for the area located indoors had enough resolution as to define the existence of two separate, adjacent tanks. © 2010 Nanjing Institute of Geophysical Prospecting.

Registro:

Documento: Artículo
Título:Small-loop electromagnetic induction for environmental studies at industrial plants
Autor:Martinelli, H.P.; Osella, A.M.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 1, (1428) Buenos Aires, Argentina
CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, (1033) Buenos Aires, Argentina
Palabras clave:data acquisition; data inversion; electrical conductivity; electrical method; electromagnetic method; geometry; pipe; signal-to-noise ratio; storage tank; visualization
Año:2010
Volumen:7
Número:1
Página de inicio:91
Página de fin:104
DOI: http://dx.doi.org/10.1088/1742-2132/7/1/008
Título revista:Journal of Geophysics and Engineering
Título revista abreviado:J. Geophys. Eng.
ISSN:17422132
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17422132_v7_n1_p91_Martinelli

Referencias:

  • Auken, E., Pellerin, L., Christensen, N.B., Sørensen, K., A survey of current trends in near-surface electrical and electromagnetic methods (2006) Geophysics, 71, pp. G249-G260
  • Bongiovanni, M.V., Bonomo, N., De La Vega, M., Martino, L., Osella, A., Rapid evaluation of multifrequency EMI data to characterize buried structures at a historical Jessuit mission in Argentina (2008) J. Appl. Geophys., 64, pp. 37-46
  • Butler, D.K., Report on a workshop on electromagnetic induction methods for UXO detection and discrimination (2004) Leading Edge, 23, pp. 766-770
  • Farquharson, C.G., Oldenburgh, D.W., Routh, P.S., Simultaneous 1D inversion of loop-loop electromagnetic data for magnetic susceptibility and electrical conductivity (2003) Geophysics, 68, pp. 1857-1869
  • Haber, E., Ascher, U.M., Oldenburg, D.W., Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach (2004) Geophysics, 69, pp. 1216-1228
  • Huang, H., Won, I., Conductivity and susceptibility mapping using broadband electromagnetic sensors (2000) J. Environ. Eng. Geophys., 5, pp. 31-41
  • Huang, H., Depth of investigation for small broadband electromagnetic sensors (2005) Geophysics, 70, pp. G135-G142
  • Lascano, E., Martinelli, P., Osella, A., EMI data from an archaeological resistive target revisited (2006) Near Surf. Geophys., 4, pp. 395-400
  • Martinelli, P., Dupláa, M.C., Laterally filtered 1D inversions of small-loop, frequency-domain EMI data from a chemical waste site (2008) Geophysics, 73, pp. F143-F149
  • Martinelli, P., Osella, A., Lascano, E., Modeling broadband electromagnetic induction responses of 2-D multilayered structures (2006) IEEE Trans. Geosci. Remote Sens., 44, pp. 2454-2460
  • McNeill, J.D., Electromagnetic terrain conductivity measurement at low induction numbers (1980) Technical Note TN-6, , Geonics Limited
  • McNeill, J.D., Bosnar, M., Application of dipole-dipole electromagnetic systems for geological depth sounding (1999) Technical Note TN-31, , Geonics Limited
  • Miller, J.T., Bell, T.H., Soukup, J., Keiswetter, D., Simple phenomenological models for wideband frequency-domain electromagnetic induction (2001) IEEE Trans. Geosci. Remote Sens., 39, pp. 1294-1298
  • Mitsuhata, Y., Toshihiro, U., Matsuo, K., Marui, A., Kusunose, K., Various-scale electromagnetic investigations of high-salinity zones in a coastal plain (2006) Geophysics, 71, pp. 167-173
  • Newman, G.A., Alumbaugh, D.L., Three-dimensional massively parallel electromagnetic inversion-I: Theory (1997) Geophys. J. Int., 128, pp. 345-354
  • Osella, A., De La Vega, M., Lascano, E., 3D electrical imaging of an archaeological site using electrical and electromagnetic methods (2005) Geophysics, 70, pp. G101-G107
  • Pellerin, L., Wannamaker, P., Multi-dimensional electromagnetic modeling and inversion with application to near-surface earth investigations (2005) Comput. Electroni. Agric., 46, pp. 71-102
  • Ṕerez-Flores, M.A., Ḿendez-Delgado, S., Ǵomez- Treviño, E., Imaging low-frequency and dc electromagnetic fields using a simple linear approximation (2001) Geophysics, 66, pp. 1067-1081
  • Sasaki, Y., Meju, M.A., A multidimensional horizontal-loop controlled-source electromagnetic inversion method and its use to characterize heterogeneity in aquiferous fractured crystalline rocks (2006) Geophys. J. Int., 166, pp. 59-66
  • Sheard, S.N., Ritchie, T.J., Christopherson, K., Brand, E., Mining, petroleum and engineering industry applications of electromagnetic techniques in Geophysics (2005) Surv. Geophys., 26, pp. 653-669
  • Sun, K., O'Neill, K., Shubitidze, F., Shamatava, I., Paulsen, K.D., Theoretical analysis and range of validity of TSA formulation for application to UXO discrimination (2004) IEEE Trans. Geosci. Remote Sens., 42, pp. 1871-1881
  • Witten, A.J., Calbert, G., Witten, B., Levy, T., Magnetic and electromagnetic induction studies at archaeological sites in southwestern Jordan (2003) J. Environ. Eng. Geophys., 8, pp. 209-215
  • Won, I.J., Small frequency-domain electromagnetic induction sensors (2003) Leading Edge, 22, pp. 320-322
  • Won, I.J., Keiswetter, D.A., Bell, T.H., Electromagnetic induction spectroscopy for clearing landmines (2001) IEEE Trans. Geosci. Remote Sens., 39, pp. 703-709
  • Won, I.J., Keiswetter, D.A., Fields, G.R.A., Sutton, I.C., GEM-2: A new multifrequency electromagnetic sensor (1996) J. Environ. Eng. Geophys., 1, pp. 129-138

Citas:

---------- APA ----------
Martinelli, H.P. & Osella, A.M. (2010) . Small-loop electromagnetic induction for environmental studies at industrial plants. Journal of Geophysics and Engineering, 7(1), 91-104.
http://dx.doi.org/10.1088/1742-2132/7/1/008
---------- CHICAGO ----------
Martinelli, H.P., Osella, A.M. "Small-loop electromagnetic induction for environmental studies at industrial plants" . Journal of Geophysics and Engineering 7, no. 1 (2010) : 91-104.
http://dx.doi.org/10.1088/1742-2132/7/1/008
---------- MLA ----------
Martinelli, H.P., Osella, A.M. "Small-loop electromagnetic induction for environmental studies at industrial plants" . Journal of Geophysics and Engineering, vol. 7, no. 1, 2010, pp. 91-104.
http://dx.doi.org/10.1088/1742-2132/7/1/008
---------- VANCOUVER ----------
Martinelli, H.P., Osella, A.M. Small-loop electromagnetic induction for environmental studies at industrial plants. J. Geophys. Eng. 2010;7(1):91-104.
http://dx.doi.org/10.1088/1742-2132/7/1/008