Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Pocket proteins retinoblastoma (pRb), p107 and p130 are negative regulators of cellular proliferation and multifunctional proteins regulating development, differentiation and chromatin structure. The retinoblastoma protein is a potent tumor suppressor mutated in a wide range of human cancers, and oncogenic viruses often interfere with cell cycle regulation by inactivating pRb. The LxCxE and pRb AB groove short linear motifs (SLiMs) are key to many pocket protein mediated interactions including host and viral partners. A review of available experimental evidence reveals that several core residues composing each motif instance are determinants for binding. In the LxCxE motif, a fourth hydrophobic position that might allow variable spacing is required for binding. In both motifs, flanking regions including charged stretches and phosphorylation sites can fine-tune the binding affinity and specificity of pocket protein SLiM-mediated interactions. Flanking regions can modulate pocket protein binding specificity, or tune the high affinity interactions of viral proteins that hijack the pRb network. The location of SLiMs within intrinsically disordered regions allows faster evolutionary rates that enable viruses to acquire a functional variant of the core motif by convergent evolution, and subsequently test numerous combinations of flanking regions towards maximizing interaction specificity and affinity. This knowledge can guide future efforts directed at the design of peptide-based compounds that can target pocket proteins to regulate the G1/S cell cycle checkpoint or impair viral mediated pRb inactivation. © 2017 The Author. Published by Oxford University Press. All rights reserved.

Registro:

Documento: Artículo
Título:Short linear motif core and flanking regions modulate retinoblastoma protein binding affinity and specificity
Autor:Palopoli, N.; Foutel, N.S.G.; Gibson, T.J.; Chemes, L.B.
Filiación:Department of Science and Technology, Universidad Nacional de Quilmes, CONICET, Roque Sáenz Peña 352, Bernal, Buenos Aires, CP (B1876BXD), Argentina
Structural Bioinformatics Unit, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, CP 1405, Argentina
Protein Structure Function and Engineering Laboratory, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, CP 1405, Argentina
Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg, 69117, Germany
Instituto de Investigaciones Biotecnológicas IIB-INTECH, Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, San-Martín, Buenos Aires, CP 1650, Argentina
Departamento de Fisiología y Biología Molecular y Celular (DFBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad UniversitariaC1428EGA, Argentina
Palabras clave:cell cycle checkpoint; flanking regions; LxCxE motif; retinoblastoma; SLiM; Binding energy; Binding sites; Cell proliferation; Oncogenic viruses; Cell cycle; Flanking regions; LxCxE motif; Retinoblastoma; SLiM; Proteins; lxcxe protein; protein; retinoblastoma protein; unclassified drug; viral protein; protein binding; retinoblastoma protein; binding affinity; convergent evolution; G1 phase cell cycle checkpoint; human; nonhuman; priority journal; protein binding; protein determination; protein function; protein interaction; protein localization; protein motif; protein phosphorylation; Review; animal; chemistry; enzyme specificity; metabolism; molecular model; protein motif; rat; Amino Acid Motifs; Animals; Humans; Models, Molecular; Protein Binding; Rats; Retinoblastoma Protein; Substrate Specificity
Año:2018
Volumen:31
Número:3
Página de inicio:69
Página de fin:77
DOI: http://dx.doi.org/10.1093/protein/gzx068
Título revista:Protein Engineering, Design and Selection
Título revista abreviado:Protein Eng. Des. Sel.
ISSN:17410126
CODEN:PEDSB
CAS:protein, 67254-75-5; Retinoblastoma Protein
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17410126_v31_n3_p69_Palopoli

Referencias:

  • Akiva, E., Friedlander, G., Itzhaki, Z., Margalit, H., (2012) PLoS Comput. Biol., 8, p. e1002341
  • Binne, U.K., Classon, M.K., Dick, F.A., Wei, W., Rape, M., Kaelin, W.G., Naar, A.M., Jr., Dyson, N.J., (2007) Nat. Cell. Biol., 9, pp. 225-232
  • Borchert, S., Czech-Sioli, M., Neumann, F., Schmidt, C., Wimmer, P., Dobner, T., Grundhoff, A., Fischer, N., (2014) J. Virol., 88, pp. 3144-3160
  • Burke, J.R., Hura, G.L., Rubin, S.M., (2012) Genes Dev., 26, pp. 1156-1166
  • Burkhart, D.L., Sage, J., (2008) Nat. Rev. Cancer, 8, pp. 671-682
  • Carr, S.M., Munro, S., Zalmas, L.P., (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 11341-11346
  • Chemes, L.B., De Prat-Gay, G., Sanchez, I.E., (2015) Curr. Opin. Struct. Biol., 32, pp. 91-101
  • Chemes, L.B., Glavina, J., Alonso, L.G., Marino-Buslje, C., De Prat-Gay, G., Sanchez, I.E., (2012) PLoS ONE, 7, p. e47661
  • Chemes, L.B., Glavina, J., Faivovich, J., De Prat-Gay, G., Sanchez, I.E., (2012) J. Mol. Biol., 422, pp. 336-346
  • Chemes, L.B., Sanchez, I.E., De Prat-Gay, G., (2011) J. Mol. Biol., 412, pp. 267-284
  • Chemes, L.B., Sanchez, I.E., Smal, C., De Prat-Gay, G., (2010) FEBS J., 277, pp. 973-988
  • Chica, C., Diella, F., Gibson, T.J., (2009) PLoS ONE, 4, p. e6052
  • Davey, N.E., Cyert, M.S., Moses, A.M., (2015) Cell. Commun. Signal., 13, p. 43
  • Davey, N.E., Shields, D.C., Edwards, R.J., (2009) Bioinformatics, 25, pp. 443-450
  • Davey, N.E., Trave, G., Gibson, T.J., (2011) Trends Biochem. Sci., 36, pp. 159-169
  • Davey, N.E., Van Roey, K., Weatheritt, R.J., (2012) Mol. Biosyst., 8, pp. 268-281
  • De Souza, R.F., Iyer, L.M., Aravind, L., (2009) Biochim. Biophys. Acta, 1799, pp. 302-318
  • Delston, R.B., Matatall, K.A., Sun, Y., Onken, M.D., Harbour, J.W., (2011) Oncogene, 30, pp. 588-599
  • Dick, F.A., (2007) Cell. Div., 2, p. 26
  • Dick, F.A., Rubin, S.M., (2013) Nat. Rev. Mol. Cell. Biol., 14, pp. 297-306
  • Dinkel, H., Van Roey, K., Michael, S., (2016) Nucleic Acids Res., 44, pp. D294-D300
  • Dowdy, S.F., Hinds, P.W., Louie, K., Reed, S.I., Arnold, A., Weinberg, R.A., (1993) Cell, 73, pp. 499-511
  • Dyson, N.J., (2016) Genes Dev., 30, pp. 1492-1502
  • Ewen, M.E., Sluss, H.K., Sherr, C.J., Matsushime, H., Kato, J., Livingston, D.M., (1993) Cell, 73, pp. 487-497
  • Fattaey, A.R., Harlow, E., Helin, K., (1993) Mol. Cell. Biol., 13, pp. 7267-7277
  • Fattman, C.L., Delach, S.M., Dou, Q.P., Johnson, D.E., (2001) Oncogene, 20, pp. 2918-2926
  • Fontes, M.R., Teh, T., Jans, D., Brinkworth, R.I., Kobe, B., (2003) J. Biol. Chem., 278, pp. 27981-27987
  • Gorelik, M., Davidson, A.R., (2012) J. Biol. Chem., 287, pp. 9168-9177
  • Gouw, M., Michael, S., Samano-Sanchez, H., (2017) Nucleic Acids Res.
  • Guiley, K.Z., Liban, T.J., Felthousen, J.G., Ramanan, P., Litovchick, L., Rubin, S.M., (2015) Genes Dev., 29, pp. 961-974
  • Hirschi, A., Cecchini, M., Steinhardt, R.C., Schamber, M.R., Dick, F.A., Rubin, S.M., (2010) Nat. Struct. Mol. Biol., 17, pp. 1051-1057
  • Inoue, Y., Kitagawa, M., Taya, Y., (2007) EMBO J., 26, pp. 2083-2093
  • Jones, R.E., Wegrzyn, R.J., Patrick, D.R., (1990) J. Biol. Chem., 265, pp. 12782-12785
  • Kaustov, L., Ouyang, H., Amaya, M., (2011) J. Biol. Chem., 286, pp. 521-529
  • Kelil, A., Levy, E.D., Michnick, S.W., (2016) Proc. Natl. Acad. Sci. USA, 113, pp. E3862-E3871
  • Kim, H.Y., Ahn, B.Y., Cho, Y., (2001) EMBO J., 20, pp. 295-304
  • Lee, C., Chang, J.H., Lee, H.S., Cho, Y., (2002) Genes Dev., 16, pp. 3199-3212
  • Lee, J.O., Russo, A.A., Pavletich, N.P., (1998) Nature, 391, pp. 859-865
  • Lees, J.A., Buchkovich, K.J., Marshak, D.R., Anderson, C.W., Harlow, E., (1991) EMBO J., 10, pp. cdc4279-cdc4290
  • Liban, T.J., Medina, E.M., Tripathi, S., Sengupta, S., Henry, R.W., Buchler, N.E., Rubin, S.M., (2017) Proc. Natl. Acad. Sci. USA, 114, pp. 4942-4947
  • Liban, T.J., Thwaites, M.J., Dick, F.A., Rubin, S.M., (2016) J. Mol. Biol., 428, pp. 3960-3971
  • Liu, B.A., Jablonowski, K., Shah, E.E., Engelmann, B.W., Jones, R.B., Nash, P.D., (2010) Mol. Cell. Proteomics, 9, pp. 2391-2404
  • Liu, X., Marmorstein, R., (2007) Genes Dev., 21, pp. 2711-2716
  • Longworth, M.S., Herr, A., Ji, J.Y., Dyson, N.J., (2008) Genes Dev., 22, pp. 1011-1024
  • Lowe, E.D., Tews, I., Cheng, K.Y., Brown, N.R., Gul, S., Noble, M.E., Gamblin, S.J., Johnson, L.N., (2002) Biochemistry, 41, pp. 15625-15634
  • Luck, K., Charbonnier, S., Trave, G., (2012) FEBS Lett., 586, pp. 2648-2661
  • Luna-Vargas, M.P., Faesen, A.C., Van Dijk, W.J., Rape, M., Fish, A., Sixma, T.K., (2011) EMBO Rep., 12, pp. 365-372
  • Morris, E.J., Dyson, N.J., (2001) Adv. Cancer Res., 82, pp. 1-54
  • Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., (2004) J. Comput. Chem., 25, pp. 1605-1612
  • Pflum, M.K., Tong, J.K., Lane, W.S., Schreiber, S.L., (2001) J. Biol. Chem., 276, pp. 47733-47741
  • Rihs, H.P., Jans, D.A., Fan, H., Peters, R., (1991) EMBO J., 10, pp. 633-639
  • Schrama, D., Hesbacher, S., Angermeyer, S., (2016) Int. J. Cancer, 138, pp. 1153-1162
  • Singh, M., Krajewski, M., Mikolajka, A., Holak, T.A., (2005) J. Biol. Chem., 280, pp. 37868-37876
  • Stein, A., Aloy, P., (2008) PLoS ONE, 3, p. e2524
  • Sun, Y., Stine, J.M., Atwater, D.Z., Sharmin, A., Ross, J.B., Briknarova, K., (2015) Biochemistry, 54, pp. 1390-1400
  • Tedesco, D., Lukas, J., Reed, S.I., (2002) Genes Dev., 16, pp. 2946-2957
  • Teyra, J., Sidhu, S.S., Kim, P.M., (2012) FEBS Lett., 586, pp. 2631-2637
  • Tompa, P., Davey, N.E., Gibson, T.J., Babu, M.M., (2014) Mol. Cell., 55, pp. 161-169
  • Van Roey, K., Uyar, B., Weatheritt, R.J., Dinkel, H., Seiler, M., Budd, A., Gibson, T.J., Davey, N.E., (2014) Chem. Rev., 114, pp. 6733-6778
  • Vorobiev, S.M., Su, M., Seetharaman, J., (2009) Proteins, 74, pp. 526-529
  • Whalen, S.G., Marcellus, R.C., Barbeau, D., Branton, P.E., (1996) J. Virol., 70, pp. 5373-5383
  • Xiao, B., Spencer, J., Clements, A., (2003) Proc. Natl. Acad Sci. USA, 100, pp. 2363-2368
  • Zhang, Y., Yeh, S., Appleton, B.A., (2006) J. Biol. Chem., 281, pp. 22299-22311

Citas:

---------- APA ----------
Palopoli, N., Foutel, N.S.G., Gibson, T.J. & Chemes, L.B. (2018) . Short linear motif core and flanking regions modulate retinoblastoma protein binding affinity and specificity. Protein Engineering, Design and Selection, 31(3), 69-77.
http://dx.doi.org/10.1093/protein/gzx068
---------- CHICAGO ----------
Palopoli, N., Foutel, N.S.G., Gibson, T.J., Chemes, L.B. "Short linear motif core and flanking regions modulate retinoblastoma protein binding affinity and specificity" . Protein Engineering, Design and Selection 31, no. 3 (2018) : 69-77.
http://dx.doi.org/10.1093/protein/gzx068
---------- MLA ----------
Palopoli, N., Foutel, N.S.G., Gibson, T.J., Chemes, L.B. "Short linear motif core and flanking regions modulate retinoblastoma protein binding affinity and specificity" . Protein Engineering, Design and Selection, vol. 31, no. 3, 2018, pp. 69-77.
http://dx.doi.org/10.1093/protein/gzx068
---------- VANCOUVER ----------
Palopoli, N., Foutel, N.S.G., Gibson, T.J., Chemes, L.B. Short linear motif core and flanking regions modulate retinoblastoma protein binding affinity and specificity. Protein Eng. Des. Sel. 2018;31(3):69-77.
http://dx.doi.org/10.1093/protein/gzx068