Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The incorporation of suspensions of nanoparticles functionalized with gallic acid (GA) was used as a strategy to obtain nanocomposite active films with different both chitosan: Tripolyphosphate (CH: TPP) and nanoparticles:chitosan (N: CH) ratios. The thermal analysis carried out by modulated differential scanning calorimetry (MDSC) allowed observing the shift of an endothermic event towards higher temperatures with a greater N: CH ratio. Analyzing ATR-FTIR spectra through principal component analysis (PCA) can be inferred that the incorporation of the nanoparticles produced a discrimination of the samples into clusters when the region 1400-1700 cm-1 was considered. The decrease in crystalline size with the inclusion of nanoparticles (NA and NB) proved the existence of interactions among CH, TPP, and GA, resulting in a more amorphous structure. The positron annihilation lifetime spectroscopy (PALS) technique was adequate to correlate the glass transition temperatures (Tg) obtained by using the MDSC technique with parameters τ2 and I2 ascribed to the annihilation of positrons in the interface. The cross section of nanocomposites obtained by scanning electron microscopy (SEM) clearly showed a homogeneous distribution of the nanoparticles without aggregation, suggesting their compatibility with the CH matrix. By virtue of the obtained results, the nanocomposites with the greatest nanoparticle proportion and the highest TPP concentration attained significant modifications in relation to CH matrices because of the crosslinking of the biopolymer with GA and TPP. © 2018 J. Lamarra et al.

Registro:

Documento: Artículo
Título:Structural Insight into Chitosan Supports Functionalized with Nanoparticles
Autor:Lamarra, J.; Damonte, L.; Rivero, S.; Pinotti, A.
Filiación:Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET-CIC, Facultad de Ciencias Exactas, Buenos Aires, Argentina
Departamento de Física, Facultad de Ciencias Exactas, UNLP, Buenos Aires, Argentina
Facultad de Ingeniería, UNLP, La Plata, Buenos Aires, 1900, Argentina
Palabras clave:Chitin; Chitosan; Differential scanning calorimetry; Fourier transform infrared spectroscopy; Glass transition; Nanocomposite films; Nanocomposites; Nanoparticles; Positron annihilation spectroscopy; Positrons; Scanning electron microscopy; Suspensions (fluids); Thermoanalysis; Amorphous structures; Crystalline size; Functionalized; Homogeneous distribution; Modulated differential scanning calorimetry; Positron annihilation lifetime spectroscopy; Structural insights; Tripolyphosphates; Principal component analysis
Año:2018
Volumen:2018
DOI: http://dx.doi.org/10.1155/2018/3965783
Título revista:Advances in Materials Science and Engineering
Título revista abreviado:Adv. Mater. Sci. Eng.
ISSN:16878434
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16878434_v2018_n_p_Lamarra

Referencias:

  • Ferreira, A.S., Nunes, C., Castro, A., Ferreira, P., Coimbra, M.A., InEuence of grape pomace extract incorporation on chitosan 5lms properties (2014) Carbohydrate Polymers, 113, pp. 490-499
  • Lamarra, J., Giannuzzi, L., Rivero, S., Pinotti, A., Assembly of chitosan support matrix with gallic acid-functionalized nanoparticles (2017) Materials Science and Engineering: C, 79, pp. 848-859
  • Alberti, A., Granato, D., Nogueira, A., Mafra, L.I., Colman, T.A., Schnitzler, E., Modelling the thermal decomposition of 3, 4, 5-Trihydroxybenzoic acid using ordinary least square regression (2016) International Food Research Journal, 23, pp. 30-33
  • Giftson, S., Jayanthi, S., Nalini, N., Chemopreventive eUcacy of gallic acid, an antioxidant and anticarcinogenic polyphenol, against 1, 2-dimethyl hydrazine induced rat colon carcinogenesis (2010) Investigational New Drugs, 28 (3), pp. 251-259
  • Rubilar, J.F., Cruz, R.M.S., Zuniga, R.N., Khmelinskii, I., Vieira, M.C., Mathematical modeling of gallic acid release from chitosan 5lms with grape seed extract and carvacrol (2017) International Journal of Biological Macromolecules, 104, pp. 197-203
  • Sun, X., Wang, Z., Kadouh, H., Zhou, K., The antimicrobial, mechanical, physical and structural properties of chitosan-gallic acid 5lms (2014) LWT-Food Science and Technology, 57 (1), pp. 83-89
  • Moreira, M.R., Pereda, M., Marcovich, N.E., Roura, S.I., Antimicrobial e6ectiveness of bioactive packaging materials from edible chitosan and casein polymers: Assessment on carrot, cheese, and salami (2011) Journal of Food Science, 76 (1), pp. 54-63
  • Dos Santos, T.C., Rescignano, N., Bo, L., Manufacture and characterization of chitosan/plga nanoparticles nanocomposite buccal 5lms (2017) Carbohydrate Polymers, 173, pp. 638-644
  • Harms, S., Ratzke, K., Faupel, F., Schneider, G.J., Willner, L., Richter, D., Free volume of interphases in model nanocomposites studied by positron annihilation lifetime spectroscopy (2010) Macromolecules, 43 (24), pp. 10505-10511
  • Rivero, S., Damonte, L., Garća, M.A., Pinotti, A., An insight into the role of glycerol in chitosan 5lms (2016) Food Biophysics, 11 (2), pp. 117-127
  • Lamarra, J., Rivero, S., Pinotti, A., Design of chitosanbased nanoparticles functionalized with gallic acid (2016) Materials Science and Engineering: C, 67, pp. 717-726
  • Calvo, P., Remunan-Lopez, C., Vila-Jato, J.L., Alonso, M.J., Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers (1997) Journal of Applied Polymer Science, 63 (1), pp. 125-132
  • Muramatsu, H., Matsumoto, K., Minekawa, S., Yagi, Y., Sasai, S., Ortho-positronium annihilation parameters in polyvinyl alcohol 5lms with various degrees of polymerization, saponi5cation and crystallinity (2001) Radiochimica Acta, 89 (2), pp. 119-123
  • Peng, H.G., Vallery, R.S., Liu, M., Skalsey, M., Gidley, D.W., Depth-pro5led positronium annihilation lifetime spectroscopy on porous 5lms (2007) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 300 (1-2), pp. 154-161
  • Da Rosa, C.G., Borges, C.D., Zambiazi, R.C., Microencapsulation of gallic acid in chitosan, ?-cyclodextrin and xanthan (2013) Industrial Crops and Products, 46, pp. 138-146
  • Nagpal, K., Singh, S.K., Mishra, D.N., Nanoparticle mediated brain targeted delivery of gallic acid: In vivo behavioral and biochemical studies for improved antioxidant and antidepressant-like activity (2012) Drug Delivery, 19 (8), pp. 378-391
  • Shavi, G.V., Nayak, U.Y., Reddy, M.S., Sustained release optimized formulation of anastrozole-loaded chitosan microspheres: In vitro and in vivo evaluation (2011) Journal of Materials Science: Materials in Medicine, 22 (4), pp. 865-878
  • Alves, A.D.C.S., Mainardes, R.M., Khalil, N.M., Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity (2016) Materials Science and Engineering: C, 60, pp. 126-134
  • Sharma, S.K., Sudarshan, K., Sahu, M., Pujari, P.K., Investigation of free volume characteristics of the interfacial layer in poly (methyl methacrylate)-Alumina nanocomposite and its role in thermal behavior (2016) RSC Advances, 6 (72), pp. 67997-68004
  • Mati-Baouche, N., De Baynast, H., Vial, C., Physicochemical, thermal, and mechanical approaches for the characterization of solubilized and solid state chitosans (2015) Journal of Applied Polymer Science, 132 (2), pp. 41257-41265
  • Qiao, C., Ma, X., Zhang, J., Yao, J., Molecular interactions in gelatin/chitosan composite 5lms (2017) Food Chemistry, 235, pp. 45-50
  • Ghozali, M., Haryono, A., E6ect of size of cellulose particle as 5ller in the pvc biocomposites on their thermal and mechanical properties (2013) Materials Science Forum, 737, pp. 67-73
  • Sujima-Anbu, A., Sahi, S.V., Venkatachalam, P., Synthesis of bioactive chemicals crosslinked sodium tripolyphosphate (tpp)-chitosan nanoparticles for enhanced cytotoxic activity against human ovarian cancer cell line (pa-1) (2016) Journal of Nanomedicine & Nanotechnology, 7 (6), pp. 1-9
  • Muniz, F.T.L., Miranda, M.A., Dos Santos, M.C., Sasaki, J.M., The scherrer equation and the dynamical theory of x-ray di6raction (2016) Acta Crystallographica Section A: Foundations and Advances, 72 (3), pp. 385-390
  • Kanimozhi, K., Basha, S.K., Kumari, V.S., Processing and characterization of chitosan/pva and methylcellulose porous sca6olds for tissue engineering (2016) Materials Science and Engineering: C, 61, pp. 484-491
  • Hsieh, T.-T., Tiu, C., Simon, G.P., Correlation between molecular structure, free volume, and physical properties of a wide range of main chain thermotropic liquid crystalline polymers (2001) Journal of Applied Polymer Science, 82 (9), pp. 2252-2267
  • Mardila, V.T., Wilandari, I.O., Shobirin, R.A., Santjojo, D.J.D.H., Sabdurin, A., In situ synthesis and characterization of chitosan-fe3o4 nanoparticles using tripolyphosphate/citrate as crosslinker (2016) Chemistry & Chemical Engineering, Biotechnology, Food Industry, 17, pp. 249-260
  • Biswas, S., Kar, S., Chaudhuri, S., Nambissan, P.M., Positron annihilation studies of defects and interfaces in zns nanostructures of di6erent crystalline and morphological features (2006) 8e Journal of Chemical Physics, 125 (16), pp. 164-719
  • Moharram, M.A., Ereiba, K.M.T., Hotaby, W.E., Bakr, A.M., Synthesis and characterization of graphene oxide/crosslinked chitosan nanocomposite for lead removal form aqueous solution (2015) Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4, pp. 1473-1489
  • Gierszewska-Druzýnska, M., Ostrowska-Czubenko, J., The effect of ionic crosslinking on thermal properties of hydrogel chitosan membranes (2010) Progress on Chemistry and Application of Chitin and Its Derivatives, Polish Chitin Society, 15, pp. 25-32
  • Hu, B., Pan, C., Sun, Y., Optimization of fabrication parameters to produce chitosan-Tripolyphosphate nanoparticles for delivery of tea catechins (2008) Journal of Agricultural and Food Chemistry, 56 (16), pp. 7451-7458
  • De Pinho Neves, A.L., Milioli, C.C., Müller, L., Riella, H.G., Kuhnen, N.C., Stulzer, H.K., Factorial design as tool in chitosan nanoparticles development by ionic gelation technique (2014) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 445, pp. 34-39
  • Ramon, O., Kesselman, E., Berkovici, R., Cohen, Y., Paz, Y., Attenuated total reeectance/fourier transform infrared studies on the phase separation process of aqueous solutions of poly (n-isopropylacrylamide) (2001) Journal of Polymer Science Part B: Polymer Physics, 39 (14), pp. 1665-1677
  • Rivero, S., Lecot, J., Pinotti, A., Impregnation of kraft paper support with polylactic acid multilayers (2017) Advanced Materials Letters, 8 (6), pp. 741-751

Citas:

---------- APA ----------
Lamarra, J., Damonte, L., Rivero, S. & Pinotti, A. (2018) . Structural Insight into Chitosan Supports Functionalized with Nanoparticles. Advances in Materials Science and Engineering, 2018.
http://dx.doi.org/10.1155/2018/3965783
---------- CHICAGO ----------
Lamarra, J., Damonte, L., Rivero, S., Pinotti, A. "Structural Insight into Chitosan Supports Functionalized with Nanoparticles" . Advances in Materials Science and Engineering 2018 (2018).
http://dx.doi.org/10.1155/2018/3965783
---------- MLA ----------
Lamarra, J., Damonte, L., Rivero, S., Pinotti, A. "Structural Insight into Chitosan Supports Functionalized with Nanoparticles" . Advances in Materials Science and Engineering, vol. 2018, 2018.
http://dx.doi.org/10.1155/2018/3965783
---------- VANCOUVER ----------
Lamarra, J., Damonte, L., Rivero, S., Pinotti, A. Structural Insight into Chitosan Supports Functionalized with Nanoparticles. Adv. Mater. Sci. Eng. 2018;2018.
http://dx.doi.org/10.1155/2018/3965783