Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work, we present new results of atomic force microscopy (AFM) force curves over pure ice at different temperatures, performed with two different environmental chambers and different kinds of AFM tips. Our results provide insight to resolve the controversy on the interpretation of experimental AFM curves on the ice-air interface for determining the thickness of the quasi-liquid layer (QLL). The use of a Mini Environmental Chamber (mEC) that provides an accurate control of the temperature and humidity of the gases in contact with the sample allowed us for the first time to get force curves over the ice-air interface without jump-in (jump of the tip onto the ice surface, widely observed in previous studies). These results suggest a QLL thickness below 1nm within the explored temperature range (-7 to -2°C). This upper bound is significantly lower than most of the previous AFM results, which suggests that previous authors overestimate the equilibrium QLL thickness, due to temperature gradients, or indentation of ice during the jump-in. Additionally, we proved that the hydrophobicity of AFM tips affects significantly the results of the experiments. Overall, this work shows that, if one chooses the experimental conditions properly, the QLL thicknesses obtained by AFM lie over the lower bound of the highly disperse results reported in the literature. This allows estimating upper boundaries for the QLL thicknesses, which is relevant to validate QLL theories and to improve multiphase atmospheric chemistry models. © Author(s) 2018.

Registro:

Documento: Artículo
Título:The quasi-liquid layer of ice revisited: The role of temperature gradients and tip chemistry in AFM studies
Autor:Constantin, J.G.; Gianetti, M.M.; Longinotti, M.P.; Corti, H.R.
Filiación:Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, B1650KNA, Argentina
Instituto de Química Física de Los Materiales, Medio Ambiente y Energía, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
División de Química Atmosférica, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, B1650KNA, Argentina
Palabras clave:atmospheric chemistry; atomic force microscopy; experimental study; ice; temperature gradient
Año:2018
Volumen:18
Número:20
Página de inicio:14965
Página de fin:14978
DOI: http://dx.doi.org/10.5194/acp-18-14965-2018
Título revista:Atmospheric Chemistry and Physics
Título revista abreviado:Atmos. Chem. Phys.
ISSN:16807316
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16807316_v18_n20_p14965_Constantin

Referencias:

  • Anderson, P.S., Neff, W.D., Boundary layer physics over snow and ice (2008) Atmos. Chem. Phys, 8, pp. 3563-3582. , https://doi.org/10.5194/acp-8-3563-2008
  • Attard, P., Measurement and interpretation of elastic and viscoelastic properties with the atomic force microscope (2007) J. Phys.: Condens. Matter, 19, p. 473201. , https://doi.org/10.1088/0953-8984/19/47/473201
  • Bartels-Rausch, T., Jacobi, H.-W., Kahan, T.F., Thomas, J.L., Thomson, E.S., Abbatt, J.P.D., Ammann, M., Sodeau, J.R., A review of air-ice chemical and physical interactions (AICI): Liquids, quasi-liquids, and solids in snow (2014) Atmos. Chem. Phys, 14, pp. 1587-1633. , https://doi.org/10.5194/acp-14-1587-2014
  • Beaglehole, D., Nason, D., Transition layer on the surface on ice (1980) Surf. Sci, 96, pp. 357-363
  • Bird, R.B., Stewart, W.E., Lightfoot, E.N., Transport Phenomena, p. 2007. , John Wiley & Sons, Revised 2nd edition
  • Bluhm, H., Salmeron, M., Growth of nanometric thin ice films from water vapor studied using scanning polarization force microscopy (1999) J. Chem. Phys, 111, pp. 6947-6954
  • Bluhm, H., Inoue, T., Salmeron, M., Friction of ice measured using lateral force microscopy (2000) Phys. Rev. B: Condens. Matter Mater. Phys, 61, pp. 7760-7765
  • Bluhm, H., Ogletree, D.F., Fadley, C.S., Hussain, Z., Salmeron, M., The premelting of ice studied with photoelectron spectroscopy (2002) J. Phys.: Condens. Matter, 14, pp. L227-L233
  • Boxe, C.S., Saiz-Lopez, A., Multiphase modeling of nitrate photochemistry in the quasi-liquid layer (QLL): Implications for NOx release from the Arctic and coastal Antarctic snowpack (2008) Atmos. Chem. Phys, 8, pp. 4855-4864. , https://doi.org/10.5194/acp-8-4855-2008
  • Butt, H.-J., Döppenschmidt, A., Hüttl, G., Müller, E., Vinogradova, O.I., Analysis of plastic deformation in atomic force microscopy: Application to ice (2000) J. Chem. Phys, 113, pp. 1194-1203
  • Carignano, M.A., Formation of stacking faults during ice growth on hexagonal and cubic substrates (2007) J. Phys. Chem. C, 111, pp. 501-504
  • Conde, M.M., Vega, C., Patrykiejew, A., The thickness of a liquid layer on the free surface of ice as obtained from computer simulation (2008) J. Chem. Phys, 120, p. 014702. , https://doi.org/10.1063/1.2940195
  • Conklin, M.H., Bales, R.C., SO2 uptake on ice spheres: Liquid nature of the ice-air interface (1993) J. Geophys. Res, 98, pp. 16851-16855
  • Dash, J.G., Rempel, A.W., Wettlaufer, J.S., The physics of premelted ice and its geophysical consequences (2006) Rev. Mod. Phys, 78, pp. 695-741
  • Döppenschmidt, A., Butt, H.J., Measuring the thickness of the liquid like layer on ice surfaces with Atomic Force Microscopy (2000) Langmuir, 16, pp. 6709-6714
  • Dosch, H., Lied, A., Bilgram, J., Glancing-angle X-ray scattering studies of the premelting of ice surfaces (1995) Surf. Sci, 327, pp. 145-164
  • Dosch, H., Lied, A., Bilgram, J.H., Disruption of the hydrogenbonding network at the surface of Ih ice near surface premelting (1996) Surf. Sci, 366, pp. 43-50
  • Elbaum, M., Lipson, S.G., Dash, J.G., Optical study of surface melting on ice (1993) J. Cryst. Growth, 129, pp. 491-505
  • Furukawa, Y., Nada, H., Anisotropic surface melting of an ice crystal and its relationship to growth forms (1997) J. Phys. Chem. B, 101, pp. 6167-6170
  • Furukawa, Y., Yamamoto, M., Kuroda, T., Ellipsometric study of the transition layer on the surface of ice crystal (1987) J. Cryst. Growth, 82, pp. 665-677
  • Gelman Constantin, J., Propiedades Termodinámicas y Estructurales de Nanoagregados de Agua y de la Interfase Hielo-aire, 2015. , PhD Thesis, Universidad de Buenos Aires
  • Gelman Constantin, J., Carignano, M.A., Corti, H.R., Szleifer, I., Molecular dynamics simulation of ice indentation by model AFM tips (2015) J. Phys. Chem. C, 119, pp. 27118-27124
  • Goertz, M., Zhu, X.-Y., Houston, J., Exploring the liquid-like layer on the ice surface (2009) Langmuir, 25, pp. 6905-6908
  • Golecki, I., Jaccard, C., The surface of ice near 0-C studied by 100 keV proton channeling (1977) Phys. Letters A, 63, pp. 374-376
  • Grannas, A.M., Jones, A.E., Dibb, J., Ammann, M., Anastasio, C., Beine, H.J., Bergin, M., Zhu, T., An overview of snow photochemistry: Evidence, mechanisms and impacts (2007) Atmos. Chem. Phys, 7, pp. 4329-4373. , https://doi.org/10.5194/acp-7-4329-2007
  • Ishizaki, T., Maruyama, M., Furukawa, Y., Dash, J.G., Premelting of ice in porous silica glass (1996) J. Cryst. Growth, 163, pp. 455-460
  • Kuo, M.H., Moussa, S.G., McNeill, V.F., Modeling interfacial liquid layers on environmental ices (2011) Atmos. Chem. Phys, 11, pp. 9971-9982. , https://doi.org/10.5194/acp-11-9971-2011
  • Kroes, G.J., Surface melting of the (0001) face of TIP4P ice (1992) Surf. Sci, 275, pp. 365-382
  • Lied, A., Dosch, H., Bilgram, J.H., Surface melting of ice Ih single crystals revealed by glancing angle x-ray scattering (1994) Phys. Rev. Lett, 72, pp. 3554-3557
  • Limmer, D., Chandler, D., Premelting fluctuations and coarsegraining of water-ice interfaces (2002) Phys. Rev. B, 66, p. 085401. , https://doi.org/10.1063/1.4895399
  • Mate, C.M., Lorenz, M.R., Novotny, V.J., Atomic force microscopy of polymeric liquid films (1989) J. Chem. Phys, 90, pp. 7550-7555
  • McNeill, V.F., Geiger, F.M., Loerting, T., Trout, B.L., Molina, L.T., Molina, M.J., Interaction of hydrogen chloride with ice surfaces: The effects of grain size, surface roughness, and surface disorder (2007) J. Phys. Chem. A, 111, pp. 6274-6284
  • Michalowski, B.A., Francisco, J.S., Li, S.M., Barrie, L.A., Bottenheim, J.W., Shepson, P.B., A computer model study of multiphase chemisty in the Arctic boundary layer during polar sunrise (2000) J. Geophys. Res, 105, pp. 13115-13145
  • Petrenko, V.F., The Surface of Ice USA Cold Regions Research and Engineering Laboratory Special Report 94-22, p. 1994
  • Petrenko, V.F., Study of the surface of ice, ice/solid and ice/liquid interfaces with scanning force microscopy (1997) J. Phys. Chem. B, 101, pp. 6276-6281
  • Pickering, I., Paleico, M., Perez Sirkin, Y.A., Scherlis, D.A., Factorovich, M.H., Grand canonical investigation of the quasi liquid layer of ice: Is it liquid (2018) J. Phys. Chem. B, 122, pp. 4880-4890
  • Pittenger, B., Fain, S.C., Cochran, M.J., Doney, J.M.K., Robertson, B.E., Szuchmacher, A., Overney, R.M., Premelting at ice-solid interfaces studied via velocity-dependent indentation with force microscope tips (2001) Phys. Rev. B, 63, p. 134102. , https://doi.org/10.1103/PhysRevB.63.134102
  • Richardson, H.H., 2D-IR correlation and principle component analysis of interfacial melting of thin ice films (2006) J. Mol. Struct, 799, pp. 56-60
  • Sadtchenko, V., Ewing, G.E., Interfacial melting of thin ice films: An infrared study (2002) J. Chem. Phys, 116, pp. 4686-4697
  • Sadtchenko, V., Ewing, G.E., A new approach to the study of interfacial melting of ice:Infrared spectroscopy (2003) Can. J. Phys, 81, pp. 333-341
  • Free and Open Source Software for Numerical Computation, 2012. , Scilab Enterprises, Scilab Scilab Enterprises: Orsay, France
  • Weber, T.A., Stillinger, F.H., Molecular dynamics study of ice crystalline melting (1983) J. Phys. Chem, 87, pp. 4277-4281
  • Wettlaufer, J.S., Dash, J.G., Melting below zero (2000) Scientific American (International Edition), 282, pp. 50-53

Citas:

---------- APA ----------
Constantin, J.G., Gianetti, M.M., Longinotti, M.P. & Corti, H.R. (2018) . The quasi-liquid layer of ice revisited: The role of temperature gradients and tip chemistry in AFM studies. Atmospheric Chemistry and Physics, 18(20), 14965-14978.
http://dx.doi.org/10.5194/acp-18-14965-2018
---------- CHICAGO ----------
Constantin, J.G., Gianetti, M.M., Longinotti, M.P., Corti, H.R. "The quasi-liquid layer of ice revisited: The role of temperature gradients and tip chemistry in AFM studies" . Atmospheric Chemistry and Physics 18, no. 20 (2018) : 14965-14978.
http://dx.doi.org/10.5194/acp-18-14965-2018
---------- MLA ----------
Constantin, J.G., Gianetti, M.M., Longinotti, M.P., Corti, H.R. "The quasi-liquid layer of ice revisited: The role of temperature gradients and tip chemistry in AFM studies" . Atmospheric Chemistry and Physics, vol. 18, no. 20, 2018, pp. 14965-14978.
http://dx.doi.org/10.5194/acp-18-14965-2018
---------- VANCOUVER ----------
Constantin, J.G., Gianetti, M.M., Longinotti, M.P., Corti, H.R. The quasi-liquid layer of ice revisited: The role of temperature gradients and tip chemistry in AFM studies. Atmos. Chem. Phys. 2018;18(20):14965-14978.
http://dx.doi.org/10.5194/acp-18-14965-2018