Artículo

Álvarez, O.; Gimenez, M.; Folguera, A.; Guillen, S.; Tocho, C. "Goce derived geoid changes before the Pisagua 2014 earthquake" (2018) Geodesy and Geodynamics. 9(1):50-56
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The analysis of space – time surface deformation during earthquakes reveals the variable state of stress that occurs at deep crustal levels, and this information can be used to better understand the seismic cycle. Understanding the possible mechanisms that produce earthquake precursors is a key issue for earthquake prediction. In the last years, modern geodesy can map the degree of seismic coupling during the interseismic period, as well as the coseismic and postseismic slip for great earthquakes along subduction zones. Earthquakes usually occur due to mass transfer and consequent gravity variations, where these changes have been monitored for intraplate earthquakes by means of terrestrial gravity measurements. When stresses and correspondent rupture areas are large, affecting hundreds of thousands of square kilometres (as occurs in some segments along plate interface zones), satellite gravimetry data become relevant. This is due to the higher spatial resolution of this type of data when compared to terrestrial data, and also due to their homogeneous precision and availability across the whole Earth. Satellite gravity missions as GOCE can map the Earth gravity field with unprecedented precision and resolution. We mapped geoid changes from two GOCE satellite models obtained by the direct approach, which combines data from other gravity missions as GRACE and LAGEOS regarding their best characteristics. The results show that the geoid height diminished from a year to five months before the main seismic event in the region where maximum slip occurred after the Pisagua Mw = 8.2 great megathrust earthquake. This diminution is interpreted as accelerated inland-directed interseismic mass transfer before the earthquake, coinciding with the intermediate degree of seismic coupling reported in the region. We highlight the advantage of satellite data for modelling surficial deformation related to pre-seismic displacements. This deformation, combined to geodetical and seismological data, could be useful for delimiting and monitoring areas of higher seismic hazard potential. © 2017 The Authors

Registro:

Documento: Artículo
Título:Goce derived geoid changes before the Pisagua 2014 earthquake
Autor:Álvarez, O.; Gimenez, M.; Folguera, A.; Guillen, S.; Tocho, C.
Filiación:Instituto Geofísico y Sismológico Ing. Volponi, FCEFyN, Universidad Nacional de San Juan, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
INDEAN – Instituto de Estudios Andinos “Don Pablo Groeber”, Departamento de Cs. Geológicas, FCEN, Universidad de Buenos Aires, Argentina
Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Argentina
Palabras clave:Forecasting and monitoring; Great megathrust earthquakes; Pre-seismic geoid changes; Satellite gravimetry; Subduction zones; coseismic process; crustal structure; deformation; earthquake event; earthquake mechanism; earthquake precursor; earthquake prediction; EOS; geoid; GOCE; gravimetry; intraplate process; monitoring; postseismic process; satellite data; satellite imagery; seismic hazard; seismology; spatiotemporal analysis; subduction zone
Año:2018
Volumen:9
Número:1
Página de inicio:50
Página de fin:56
DOI: http://dx.doi.org/10.1016/j.geog.2017.09.005
Título revista:Geodesy and Geodynamics
Título revista abreviado:Geod. Geodyn.
ISSN:16749847
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16749847_v9_n1_p50_Alvarez

Referencias:

  • Kendrick, E., Bevis, M., Smalley, R., Brooks, B., An integrated crustal velocity field for the Central Andes (2001) Geochem. Geophys. Geosyst., 2
  • Cortés-Aranda, J., González, G., Rémy, D., Martinod, J., Normal upper plate fault reactivation in northern Chile and the subduction earthquake cycle: from geological observations and static Coulomb Failure Stress (CFS) change (2015) Tectonophysics, 639, pp. 118-131
  • Reid, H.F., (1910) The Mechanics of the Earthquake, the California Earthquake of April 18, 1906. Report of the State Investigation Commission, 2. , Carnegie Institution of Washington Washington D.C
  • Mogi, K., Earthquake Prediction (1985), Academic Press Inc. EUA; Contreras-Reyes, E., Ruiz, J.A., Becerra, J., Kopp, H., Reichert, C.J., Maksymowicz, A., Arraigada, C., Structure and tectonics of the central Chilean margin (31°–33°S): implications for subduction erosion and shallow crustal seismicity (2015) Geophys. J. Int., 203 (2), pp. 776-791
  • Chlieh, M., Perfettini, H., Tavera, H., Avouac, J., Remy, D., Nocquet, J., Rolandone, F., Bonvalot, S., Interseismic coupling and seismic potential along the Central Andes subduction zone (2011) J. Geophys. Res., 116, p. B12405
  • Li, L., Lay, T., Cheung, K.F., Ye, L., Joint modeling of teleseismic and tsunami wave observations to constrain the 16 September 2015 Illapel, Chile, MW 8.3 earthquake rupture process (2016) Geophys. Res. Lett., 43
  • Bürgmann, R., Kogan, M.G., Steblov, G.M., Hilley, G., Levin, V.E., Apel, E., Interseismic coupling and asperity distribution along the Kamchatka subduction zone (2005) J. Geophys. Res., 110, p. B07405
  • Perfettini, H., Avouac, J.P., Tavera, H., Kositsky, A., Nocquet, J.M., Bondoux, F., Chlieh, M., Soler, P., Seismic and aseismic slip on the Central Peru megathrust (2010) Nature, 465, pp. 78-81
  • Moreno, M., Rosenau, M., Oncken, O., 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone (2010) Nature, 467, pp. 198-202
  • Perfettini, H., Avouac, J.P., Stress transfer and strain rate variations during the seismic cycle (2004) J. Geophys. Res., 109, p. B06402
  • Metois, M., Socquet, A., Vigny, C., Carrizo, D., Peyrat, S., Delorme, A., Maureira, E., Ortega, I., Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling (2013) Geophys. J. Int., 194, pp. 1283-1294
  • Han, S.C., Shum, C.K., Bevis, M., Ji, C., Kuo, C.Y., Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake (2006) Science, 313, p. 658
  • Wang, L., Shum, C.K., Simons, F.J., Tapley, B., Dai, C., Coseismic and postseismic deformation of the 2011 Tohoku-Oki earthquake constrained by GRACE gravimetry (2012) Geophys. Res. Lett., 39, p. L07301
  • Wang, L., Shum, C.K., Simons, F.J., Tassara, A., Erkan, K., Jekeli, C., Braun, A., Yuan, D.N., Coseismic slip of the 2010 Mw 8.8 Great Maule, Chile, earthquake quantified by the inversion of GRACE observations (2012) Earth Planet. Sci. Lett., 335-336, pp. 167-179
  • Fuchs, M.J., Bouman, J., Broerse, T., Visser, P., Vermeersen, B., Observing coseismic gravity change from the Japan Tohoku-Oki 2011 earthquake with GOCE gravity gradiometry (2013) J. Geophys. Res. Solid Earth, 118, pp. 1-10
  • Alvarez, O., Nacif, S., Spagnotto, S., Folguera, A., Gimenez, M., Chlieh, M., Braitenberg, C., Gradients from GOCE reveal gravity changes before Pisagua Mw = 8.2 and Iquique Mw = 7.7 large megathrust earthquakes (2015) J. South Am. Earth Sci., 64P2, pp. 15-29
  • Alvarez, O., Pesce, A., Gimenez, M., Folguera, A., Soler, S., Wenjin, C., Analysis of the Illapel Mw = 8.3 thrust earthquake rupture zone using GOCE derived gradients (2017) Pure Appl. Geophys., 174, pp. 47-75
  • Bruinsma, S.L., Förste, C., Abrikosov, O., Marty, J.C., Rio, M.H., Mulet, S., The new ESA satellite-only gravity field model via the direct approach (2013) Geophys. Res. Lett., 40, pp. 3607-3612
  • Hao, H., Xinga, L., Liua, Z., Hanc, Y., Li, H., Gravity variation in the Tibet area before the Nepal Ms 8.1 earthquake (2016) Geod. Geodyn., 7, pp. 425-431
  • Feldl, N., Bilham, R., Great Himalayan earthquakes and the Tibetan plateau (2006) Nature, 444, pp. 165-170
  • Zhu, Y., Liang, W., Xu, Y., Medium-term prediction of MS 8.0 earthquake in Wenchuan, Sichuan by mobile gravity (2008) Recent Dev. World Seismol., 7, pp. 36-39
  • Kang, K., Li, H., Liu, S., Hao, H., Zou, Z., Long-term gravity changes in Tibet and its vicinity before the Nepal Ms 8.1 earthquake (2015) J. Geod. Geodyn., 5, pp. 742-746
  • Chen, S., Liu, M., Xing, L., Xu, W., Wang, W., Zhu, Y., Gravity increase before the 2015 Mw 7.8 Nepal earthquake (2016) Geophys. Res. Lett., 43
  • Liang, W., Zhang, G., Zhu, Y., Xu, Y., Guo, S., Zhao, Y., Liu, F., Zhao, L., Gravity variations before the Menyuan Ms 6.4 earthquake (2016) Geod. Geodyn., 7, pp. 223-229
  • Han, S.C., Sauber, J., Luthcke, S., Regional gravity decrease after the 2010 Maule (Chile) earthquake indicates large-scale mass redistribution (2010) Geophys. Res. Lett., 37, p. L23307
  • Chen, J.L., Wilson, C.R., Tapley, B.D., Grand, S., GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake (2007) Geophys. Res. Lett., 34, p. L13302
  • Panet, I., Mikhailov, V., Diament, M., Pollitz, F., King, G., de Viron, O., Holschneider, M., Lemoine, J.M., Coseismic and post-seismic signatures of the Sumatra 2004 December and 2005 March earthquakes in GRACE satellite gravity (2007) Geophys. J. Int., 171, pp. 177-190
  • deViron, O., Panet, I., Mikhailov, V., Van Camp, M., Diament, M., Retrieving earthquake signature in grace gravity solutions (2008) Geophys. J. Int., 174 (1), pp. 14-20
  • Cazenave, A., Chen, J., Time-variable gravity from space and present-day mass redistribution in the Earth system (2010) Earth Planet. Sci. Lett., 298, pp. 263-274
  • Song, T.R., Simons, M., Large trench-parallel gravity variations predict seismogenic behavior in subduction zones (2003) Science, 301, pp. 630-633
  • Wells, R.E., Blakely, R.J., Sugiyama, Y., Scholl, D.W., Dinterman, P.A., Basin centered asperities in great subduction zone earthquakes: a link between slip, subsidence and subduction erosion? (2003) J. Geophys. Res., 108 (B10), pp. 2507-2536
  • Alvarez, O., Nacif, S., Gimenez, M., Folguera, A., Braitenberg, A., GOCE derived vertical gravity gradient delineates great earthquake rupture zones along the Chilean margin (2014) Tectonophysics, 622, pp. 198-215
  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., y Factor, J.K., The development and evaluation of the Earth Gravitational Model 2008 (2012) J. Geophys. Res., 117, p. B04406
  • Reguzzoni, M., Sampietro, D., An inverse gravimetric problem with GOCE data. International Association of Geodesy Symposia (2010) Gravity Geoid Earth Obs., 135 (5), pp. 451-456. , Springer-Verlag
  • Pail, R., Bruinsma, S., Migliaccio, F., Förste, C., Goiginger, H., Schuh, W.D., Höck, E., Tscherning, C.C., First GOCE gravity field models derived by three different approaches (2011) J. Geod., 85, pp. 819-843
  • Bruinsma, S.L., Förste, C., Abrikosov, O., Lemoine, J.M., Marty, J.C., Mulet, S., Rio, M.H., Bonvalot, S., ESA's satellite-only gravity field model via the direct approach based on all GOCE data (2014) Geophys. Res. Lett., 41, pp. 7508-7514
  • Barthelmes, F., Definition of Functionals of the Geopotential and Their Calculation from Spherical Harmonic Models. Theory and Formulas Used by the Calculation Service of the International Centre for Global Earth Models (ICGEM). Scientific Technical Report, STR09/02, Revised edition (2013), http://icgem.gfz-postdam.de/ICGEM, GFZ German Research Centre for Geosciences Potsdam, Germany; Hofmann-Wellenhof, B., Moritz, H., Physical Geodesy (2006), second ed. Springer Berlin 286 pp; Janak, J., Sprlak, M., New software for gravity field modelling using spherical armonic (2006) Geod. Cartogr. Horiz., 52, pp. 1-8. , (in Slovak)
  • Schurr, B., Asch, G., Hainzl, S., Bedford, J., Hoechner, A., Palo, M., Wang, R., Vilotte, J.P., Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake (2014) Nature, 512, pp. 299-302
  • Hayes, G.P., Herman, M.W., Barnhart, W.D., Furlong, K.P., Riquelme, S., Benz, H.M., Bergman, E., Samsonov, P., Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake (2014) Nature, 512, pp. 295-298
  • Ruiz, S., Metois, M., Fuenzalida, A., Ruiz, J., Leyton, F., Grandin, R., Vigny, C., Campos, J., Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw = 8.1 earthquake (2014) Science, 345 (6201), pp. 1165-1169
  • Bürgmann, R., Warning signs of the Iquique earthquake (2014) Nature, 512, pp. 258-259
  • Socquet, A., Valdes, J.P., Jara, J., Cotton, F., Walpersdorf, A., Cotte, N., Specht, S., Norabuena, E., An 8 month slow slip event triggers progressive nucleation of the 2014 Chile megathrust (2017) Geophys. Res. Lett., 44, pp. 4046-4053
  • Nishenko, S.P., Seismic Potential for large and great interplate earthquakes along the Chilean and southern Peruvian margins of South America. A quantitative reappraisal (1985) J. Geophys. Res., 90, pp. 3589-3615
  • Lomnitz, C., Major earthquakes of Chile: a historical survey, 1535–1960 (2004) Seismol. Res. Lett., 75, pp. 368-378
  • Cesca, S., Grigoli, F., Heimann, S., Dahm, T., Kriegerowski, M., Sobiesiak, M., Tassara, A., Olcay, M., The Mw 8.1 2014 Iquique, Chile, seismic sequence: a tale of foreshocks and aftershocks (2016) Geophys. J. Int., 204, pp. 1766-1780
  • vonHuene, R., Scholl, D.W., Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust (1991) Rev. Geophys., 29, pp. 279-316
  • Adam, J., Reuther, C.D., Crustal dynamics and active fault mechanics during subduction erosion. Application of frictional wedge analysis on to the North Chilean Forearc (2000) Tectonophysics, 321, pp. 297-325
  • Lamb, S., Davis, P., Cenozoic climate change as a possible cause for the rise of the Andes (2003) Nature, 425, pp. 792-797
  • Völker, D., Wiedicke, M., Ladage, S., Gaedicke, C., Reichert, C., Rauch, K., Kramer, W., Heubeck, C., Latitudinal variation in sedimentary processes in the Peru-Chile Trench off Central Chile (2006) The Andes-Active Subduction Orogeny, Frontiers in Earth Science Series, Part II, pp. 193-216. , Oncken et al. (eds.) Springer-Verlag Berlin Heidelberg New York
  • Leon-Rios, S., Ruiz, S., Maksymowicz, A., Leyton, F., Fuenzalida, A., Madariaga, R., Diversity of the 2014 Iquique's foreshocks and aftershocks: clues about the complex rupture process of a Mw 8.1 earthquake (2016) J. Seismol., 20 (4), pp. 1059-1073
  • Bouchon, M., Durand, V., Marsan, D., Karabulut, H., Schmittbuhl, J., The long precursory phase of most large interplate earthquakes (2013) Nat. Geosci., 6 (4)
  • Bassett, D., Watts, A.B., Gravity anomalies, crustal structure, and seismicity at subduction zones: 1. Seafloor roughness and subducting relief (2015) Geochem. Geophys. Geosyst., 16, pp. 1508-1540
  • Bassett, D., Watts, A.B., Gravity anomalies, crustal structure, and seismicity at subduction zones: 2. Interrelationships between fore-arc structure and seismogenic behavior (2015) Geochem. Geophys. Geosyst., 16, pp. 1541-1576
  • Kohlstedt, D.L., Evans, B., Mackwell, S.J., Strength of the lithosphere: constraints imposed by laboratory experiments (1995) J. Geophys. Res., 100 (B9), pp. 17587-17602
  • Savage, J.C., A dislocation model of strain accumulation and release at a subduction zone (1983) J. Geophys. Res., 88, pp. 4984-4996
  • Li, S., Moreno, M., Bedford, J., Rosenau, M., Oncken, O., Revisiting viscoelastic effects on interseismic deformation and locking degree: a case study of the Peru-North Chile subduction zone (2015) J. Geophys. Res. Solid. Earth., 120

Citas:

---------- APA ----------
Álvarez, O., Gimenez, M., Folguera, A., Guillen, S. & Tocho, C. (2018) . Goce derived geoid changes before the Pisagua 2014 earthquake. Geodesy and Geodynamics, 9(1), 50-56.
http://dx.doi.org/10.1016/j.geog.2017.09.005
---------- CHICAGO ----------
Álvarez, O., Gimenez, M., Folguera, A., Guillen, S., Tocho, C. "Goce derived geoid changes before the Pisagua 2014 earthquake" . Geodesy and Geodynamics 9, no. 1 (2018) : 50-56.
http://dx.doi.org/10.1016/j.geog.2017.09.005
---------- MLA ----------
Álvarez, O., Gimenez, M., Folguera, A., Guillen, S., Tocho, C. "Goce derived geoid changes before the Pisagua 2014 earthquake" . Geodesy and Geodynamics, vol. 9, no. 1, 2018, pp. 50-56.
http://dx.doi.org/10.1016/j.geog.2017.09.005
---------- VANCOUVER ----------
Álvarez, O., Gimenez, M., Folguera, A., Guillen, S., Tocho, C. Goce derived geoid changes before the Pisagua 2014 earthquake. Geod. Geodyn. 2018;9(1):50-56.
http://dx.doi.org/10.1016/j.geog.2017.09.005