Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The Ecuador Mw = 7.8 earthquake on April 16, 2016, ruptured a nearly 200 km long zone along the plate interface between Nazca and South American plates which is coincident with a seismic gap since 1942, when a Mw = 7.8 earthquake happened. This earthquake occurred at a margin characterized by moderately big to giant earthquakes such as the 1906 (Mw = 8.8). A heavily sedimented trench explains the abnormal lengths of the rupture zones in this system as inhibits the role of natural barriers on the propagation of rupture zones. High amount of sediment thickness is associated with tropical climates, high erosion rates and eastward Pacific dominant winds that provoke orographic rainfalls over the Pacific slope of the Ecuatorian Andes. Offshore sediment dispersion off the oceanic trench is controlled by a close arrangement of two aseismic ridges that hit the Costa Rica and South Ecuador margin respectively and a mid ocean ridge that separates the Cocos and Nazca plate trapping sediments. Gravity field and Ocean Circulation Explorer (GOCE) satellite data are used in this work to test the possible relationship between gravity signal and earthquake rupture structure as well as registered aftershock seismic activity. Reduced vertical gravity gradient shows a good correlation with rupture structure for certain degrees of the harmonic expansion and related depth of the causative mass; indicating, such as in other analyzed cases along the subduction margin, that fore-arc structure derived from density heterogeneities explains at a certain extent propagation of the rupture zones. In this analysis the rupture zone of the April 2016 Ecuador earthquake developed through a relatively low density zone of the fore-arc sliver. Finally, aftershock sequence nucleated around the area of maximum slips in the rupture zone, suggesting that heterogeneous density structure of the fore-arc determined from gravity data could be used in forecasting potential damaged zones associated with big ruptures along the subduction border. © 2017 Institute of Seismology, China Earthquake Administration

Registro:

Documento: Artículo
Título:Rupture area analysis of the Ecuador (Musine) Mw = 7.8 thrust earthquake on April 16, 2016, using GOCE derived gradients
Autor:Álvarez, O.; Folguera, A.; Gimenez, M.
Filiación:Instituto Geofísico y Sismológico Ing, Volponi, Universidad Nacional de San Juan, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
INDEAN – Instituto de Estudios Andinos “Don Pablo Groeber”, Departamento de Cs. Geológicas, FCEN, Universidad de Buenos Aires, Argentina
Palabras clave:Ecuador earthquake; Gravity field and Ocean Circulation Explorer (GOCE); Rupture zone; Trench sediments; Vertical gravity gradient; Cocos plate; earthquake event; earthquake rupture; GOCE; gravity field; Nazca plate; satellite data; seismic zone; thrust; Andes; Costa Rica; Ecuador
Año:2017
Volumen:8
Número:1
Página de inicio:49
Página de fin:58
DOI: http://dx.doi.org/10.1016/j.geog.2017.01.005
Título revista:Geodesy and Geodynamics
Título revista abreviado:Geod. Geodyn.
ISSN:16749847
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16749847_v8_n1_p49_Alvarez

Referencias:

  • Floberghagen, R., Fehringer, M., Lamarre, D., Muzi, D., Frommknecht, B., Steiger, C., Piñeiro, J., Costa, A., Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission (2011) J Geodesy, 85, pp. 749-758
  • Pail, R., Bruinsma, S., Migliaccio, F., Förste, C., Goiginger, H., Schuh, W.D., Höck, E., Tscherning, C.C., First GOCE gravity field models derived by three different approaches (2011) J Geod, 85, pp. 819-843
  • Bruinsma, S.L., Marty, J.C., Balmino, G., Biancale, R., Förste, C., Abrikosov, O., Neumayer, H., GOCE gravity field recovery by means of the direct numerical method (2010) Proceedings of the ESA Living Planet Symposium, , H. Lacoste-Francis Norway, ESA Publication (27) SP-686 Bergen
  • Brockmann, J.M., Zehentner, N., Hock, E., Pail, R., Loth, I., Mayer-Giirr, T., Schuh, W.D., EGM_TIM_RW5: an independent geoid with centimeter accuracy purely based on the GOCE mission (2014) Geophys Res Lett, 41, pp. 8089-8099
  • Fuchs, M.J., Bouman, J., Broerse, T., Visser, P., Vermeersen, B., Observing coseismic gravity change from the Japan Tohoku-Oki 2011 earthquake with GOCE gravity gradiometry (2013) J Geophys Res Solid Earth, 118, pp. 1-10
  • Alvarez, O., Nacif, S., Gimenez, M., Folguera, A., Braitenberg, A., GOCE derived vertical gravity gradient delineates great earthquake rupture zones along the Chilean margin (2014) Tectonophysics, 622, pp. 198-215
  • Alvarez, O., Nacif, S., Spagnotto, S., Folguera, A., Gimenez, M., Chlieh, M., Braitenberg, C., Gradients from GOCE reveal gravity changes before Pisagua Mw = 8.2 and Iquique Mw = 7.7 large megathrust earthquakes (2015) J S Am Earth Sci, 64P2, pp. 15-29
  • Álvarez, O., Pesce, A., Gimenez, M., Folguera, A., Soler, S., Wenjin, C., Analysis of the Illapel Mw = 8.3 thrust earthquake rupture zone using GOCE derived gradients (2017) Pure Appl Geophys, 174, pp. 47-75
  • Song, T.R., Simons, M., Large trench-parallel gravity variations predict seismogenic behavior in subduction zones (2003) Science, 301, pp. 630-633
  • Wells, R.E., Blakely, R.J., Sugiyama, Y., Scholl, D.W., Dinterman, P.A., Basin centered asperities in great subduction zone earthquakes: a link between slip, subsidence and subduction erosion? (2003) J Geophys Res, 108 (B10), pp. 2507-2536
  • Llenos, A.L., Mc Guire, J.J., Influence of fore-arc structure on the extent of great subduction zone earthquakes (2007) J Geophys Res, 112, p. B09301
  • Sobiesak, M., Meyer, U., Schmidt, S., Götze, H.J., Krawczyk, C., Asperity generating upper crustal sources revealed by b-value and isostatic residual anomaly grids in the area of Antofagasta (2007) J Geophys Res, 112, p. B12308
  • Maksymowicz, A., Tréhuc, A., Contreras-Reyes, E., Ruiz, S., Density-depth model of the continental wedge at the maximum slip segment of the Maule Mw8.8 megathrust earthquake (2015) Earth Planet Sci Lett, 409, pp. 265-277
  • Tassara, A., Control of forearc density structure on megathrust shear strength along the Chilean subduction zone (2010) Tectonophysics, 495, pp. 34-47
  • Amante, C., Eakins, B.W., ETOPO1, 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24 (2009), p. 19. , March 2009; Siebert, L., Simkin, T., Volcanoes of the World: An Illustrated Catalog of Holocene Volcanoes and their Eruptions. Smithsonian Institution, Global Volcanism Program Digital Information Series, GVP-3 (2002), http://www.volcano.si.edu/world/; Chlieh, M., Mothes, P.A., Nocquet, J.M., Jarrin, P., Charvis, P., Cisneros, D., Font, Y., Yepes, H., Distribution of discrete seismic asperities and aseismic slip along the Ecuadorian Megathrust (2014) Earth Planet Sci Lett, 400 (2014), pp. 292-301
  • Megard, F., Cordilleran Andes and Marginal Andes: a review of Andean geology North of Arica elbow (18″) (1987) Circum-Pacific Orogenic Belts and Evolution of the Pacific Ocean Basin, J. Geodyn. Ser., 18. , J.W.H. Monger Francheteau Am. Geophys. Union Washington, DC
  • Herd, D.G., Youd, T.L., Meyer, H., Arango, J.L., Person, C.W.J., Mendoza, C., The great Tumaco, Colombia earthquake of 12 December 1979 (1981) Science, 211, pp. 441-445
  • Kanamori, H., McNally, K.C., Variable rupture mode of the subduction zone along the Ecuador–Colombia coast (1982) Bull Seismol Soc Am, 72 (4), pp. 1241-1253
  • Beck, S.L., Ruff, L.J., The rupture process of the great 1979 Colombia earthquake-evidence for the asperity model (1984) J Geophys Res, 89, pp. 9281-9291
  • Mendoza, C., Dewey, J.W., Seismicity associated with the great Colombia–Ecuador earthquakes of 1942, 1958 and 1979: implications for barrier models of earthquake rupture (1984) Bull Seismol Soc Am, 74 (2), pp. 577-593
  • Swenson, J.L., Beck, S.L., Historical 1942 Ecuador and 1942 Peru subduction earthquakes, and earthquake cycles along Colombia–Ecuador and Peru subduction segments (1996) Pure Appl Geophys, 146 (1), pp. 67-101
  • Collot, J.-Y., Marcaillou, B., Sage, F., Michaud, F., Agudelo, W., Charvis, P., Graindorge, D., Spence, G., Are rupture zone limits of great subduction earthquakes controlled by upper plate structures? Evidences from multichannel seismic reflection data acquired across the northern Ecuador–southwest Colombia margin (2004) J Geophys Res, p. 109
  • Ye, L., Kanamori, H., Avouac, J.P., Li, L., Cheung, K.F., Lay, T., The 16 April 2016, MW 7.8 (MS 7.5) Ecuador earthquake: a quasi-repeat of the 1942 MS 7.5 earthquake and partial re-rupture of the 1906 MS 8.6 Colombia–Ecuador earthquake (2016) Earth Planet Sci Lett, 454, pp. 248-258
  • Nocquet, J.M., Villegas-Lanza, J.C., Chlieh, M., Mothes, P.A., Rolandone, F., Jarrin, P., Cisneros, D., Yepes, H., Motion of continental slivers and creeping subduction in the northern Andes (2014) Nat Geosci, 7, pp. 287-291
  • Gutscher, M.A., Malavieille, J., Lallemand, S., Collot, J.Y., Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision (1999) Earth Planet Sci Lett, 168, pp. 255-270
  • Marcaillou, B., Régimes tectoniques et thermiques de la marge Nord Equateur-Sud Colombie (0°–3.5°N) – Implications sur la sismogenèse (2003), Thèse de Doctorat Université Pierre et Marie Curie (Paris VI); Calahorrano, A., Structure de la marge du Golfe de Guayaquil (Equateur) et propriétés physiques du chenal de subduction à partir de données de sismique marine réflexion et réfraction (2005), Thèse de Doctorat Université Pierre et Marie Curie (Paris VI); Gailler, A., Charvis, P., Flueh, E.R., Segmentation of the Nazca and South American plates along the Ecuador subduction zone from wide-angle seismic profiles (2007) Earth Planet Sci Lett, 260, pp. 444-464
  • Lonsdale, P., Klitgord, K.D., Structure and tectonic history of the eastern Panama Basin (1978) Geol Soc Am Bull, 89, pp. 981-999
  • Gardner, T.W., Verdonck, D., Pinter, N.M., Slingerland, R., Furlong, K.P., Bullard, T.F., Wells, S.G., Quaternary uplift astride the aseismic Cocos Ridge, Pacific coast, Costa Rica (1992) Geol Soc Am Bull, 104, pp. 219-232
  • Collot, J.Y., Charvis, P., Gutscher, M.A., Operto, S., The Sisteur scientific party, exploring the Ecuador–Colombia active margin and inter-plate seismogenic zone (2002) EOS, 83 (185), pp. 189-190
  • Mix, A.C., Tiedemann, R., Blum, P., shipboard scientists, (2002) Southeast Pacific Paleoceanographic Transects Sites 1232–1242, ODP Leg 202
  • Michaud, F., Chabert, A., Collot, J.-Y., Sallarès, V., Flueh, E.R., Charvis, P., Graindorge, D., Bialas, J., Fields of multi-kilometer scale sub-circular depressions in the Carnegie ridge sedimentary blanket: effect of underwater carbonate dissolution? (2005) Mar Geol, 216, pp. 205-219
  • De Vries, T., The geology of late Cenozoic marine terraces (tablazos) in northwestern Peru (1988) J South Am Earth Sci, 1, pp. 121-136
  • Deniaud, Y., Baby, P., Basile, C., Ordoñez, M., Montenegro, G., Mascle, G., Ouverture et evolution tectono-sédimentaire du golfe de Guayaquil: basin d'avant-arc néogene et quaternaire du Sud des Andes équatoriennes (1999) Acad Sci Paris, 328, pp. 181-187
  • Witt, C., Bourgois, J., Michaud, F., Ordoñez, M., Jiménez, N., Sosson, M., Development of the Gulf of Guayaquil (Ecuador) during the quaternary as an effect of the North Andean block tectonic escape (2006) Tectonics, 25, p. TC3017
  • Alvarado, A., Audin, L., Nocquet, J.M., Jaillard, E., Mothes, P., Jarrín, P., Segovia, M., Cisneros, D., Partitioning of oblique convergence in the Northern Andes subduction zone: migration history and the present-day boundary of the North Andean Sliver in Ecuador (2016) Tectonics, 35, pp. 1048-1065
  • Graindorge, D., Calahorrano, A., Charvis, P., Collot, J.Y., Bethoux, N., Deep structures of the Ecuador convergent margin and the Carnegie Ridge, possible consequence on great earthquakes recurrence interval (2004) Geophys Res Lett Solid Earth, 31 (4)
  • Yepes, H., Audin, L., Alvarado, A., Beauval, C., Aguilar, J., Font, Y., Cotton, F., A new view for the geodynamics of Ecuador: implication in seismogenic source definition and seismic hazard assessment (2016) Tectonics, 35, pp. 1249-1279
  • Contreras-Reyes, E., Flueh, E., Grevemeyer, L., Tectonic control on sediment accretion and subduction off south-central Chile: implications for coseismic rupture processes of the 1960 and 2010 megathrust earthquakes (2010) Tectonics, 29, p. TC6018
  • Heuret, A., Conrad, C.P., Funiciello, F., Lallemand, S., Sandri, L., Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate strain (2012) Geophys Res Lett, 39, p. L05304
  • Ruff, L.J., Do trench sediments affect great earthquake occurrence in subduction zones? (1989) Pure Appl Geophys, 129, pp. 263-282
  • Schertwath, M., Contreras-Reyes, E., Flueh, E., Grevemeyer, J., Krabbenhoeft, A., Papenberg, C., Petersen, C., Weinrebe, R.W., Deep lithospheric structures along the southern central Chile margin from wide-angle P-wave modelling (2009) Geophys J Int, 179 (1), pp. 579-600
  • Echeverri, S., Cardona, A., Pardo-Trujillo, A., López, S., Regional rovenance from southwestern Colombia Fore-arc and intra-arc basins: implications for middle to late miocene orogeny in the Northern Andes (2015) Terranova, 27 (5)
  • Pennington, W., Subduction of the Eastern Panama Basin and seismotectonics of northwestern South America (1981) J Geophys Res, 86 (B11), pp. 10753-10770
  • Costa, C., Audemard, F., Audin, L., Benavente, C., Geomorphology as a tool for analysis of seismogenic sources in Latin America and the Caribbean (2009) Natural Hazards and Human-Exacerbated Disasters in Latin America, pp. 30-46. , E. Latrubesse Elsevier
  • Egbue, O., Kellogg, L., Pleistocene to present North Andean ‘escape’ (2010) Tectonophysics, 489, pp. 248-257
  • Bruinsma, S.L., Förste, C., Abrikosov, O., Marty, J.C., Rio, M.H., Mulet, S., Bonvalot, S., The new ESA satellite-only gravity field model via the direct approach (2013) Geophys Res Lett, 40, pp. 3607-3612
  • Li, X., Vertical resolution: gravity versus vertical gravity gradient (2001) Lead Edge, 20, pp. 901-904
  • Hofmann-Wellenhof, B., Moritz, H., Phys. Geod. (2006), p. 286. , 2nd ed. Springer Berlin; Barthelmes, F., Definition of Functionals of the Geopotential and Their Calculation from Spherical Harmonic Models. Theory and Formulas Used by the Calculation Service of the International Centre for Global Earth Models (ICGEM) (2013), http://icgem.gfz-postdam.de/ICGEM, Scientific Technical Report, STR09/02, Revised edition, January 2013. GFZ German Research Centre for Geosciences, Potsdam, Germany. World Wide Web Address; Janak, J., Sprlak, M., New software for gravity field modelling using spherical armonic (2006) Geod Cartog Hor, 52, pp. 1-8. , (in Slovak)
  • Braitenberg, C., Mariani, P., Ebbing, J., Sprlak, M., The enigmatic Chad lineament revisited with global gravity and gravity-gradient fields (2011) The Formation and Evolution of Africa: A Synopsis of 3.8 Ga of Earth History, Geol. Soc. London Spec. Publ., 357, pp. 329-341. , D.J.J. Van Hinsbergen S.J.H. Buiter T.H. Torsvik C. Gaina S.J. Webb Geological Society London
  • Alvarez, O., Gimenez, M.E., Martinez, M.P., LinceKlinger, F., Braitenberg, C., New insights into the Andean crustal structure between 32° and 34°S from GOCE satellite gravity data and EGM2008 model (2015) Geodynamic Processes in the Andes of Central Chile and Argentina, Geological Society, London, Special Publications, 399, pp. 183-202. , S.A. Sepúlveda L.B. Giambiagi S.M. Moreiras L. Pinto M. Tunik G.D. Hoke M. Farías
  • Alvarez, O., Gimenez, M., Folguera, A., Spagnotto, S., Bustos, E., Baez, W., Braitenberg, C., New evidence about the subduction of the Copiapó ridge beneath South America, and its connection with the Chilean-Pampean flat slab, tracked by satellite GOCE and EGM2008 models (2015) J Geodyn, 91C, pp. 65-88
  • Alvarez, O., Gimenez, M.E., Braitenberg, C., Folguera, A., GOCE satellite derived gravity and gravity gradient corrected for topographic effect in the South Central Andes region (2012) Geophys J Int, 190 (2), pp. 941-959
  • Alvarez, O., Gimenez, M.E., Braitenberg, C., Nueva metodología para el cálculo del efecto topográfico para la corrección de datos satelitales (2013) Rev Asoc Geol Arg, 70 (4), pp. 422-429
  • Forsberg, R., Tscherning, C.C., Topographic effects in gravity modeling for BVP (1997) Geodetic Boundary Value Problems in View of the One Centimeter Geoid, Lecture Notes in Earth Science, 65, pp. 241-272. , F. Sanso R. Rummel Springer-Verlag Berlin
  • Heck, B., Seitz, K., A comparison of the tesseroid, prism and point mass approaches for mass reductions in gravity field modeling (2007) J Geod, 81 (2), pp. 121-136
  • Wild-Pfeiffer, F., A comparison of different mass element for use in gravity gradiometry (2008) J Geod, 82, pp. 637-653
  • Grombein, T., Heck, B., Seitz, K., Untersuchungen zur effizienten Berechnung topographischer Effekte auf den Gradiententensor am Fallbeispiel der Satelliten gradiometrie mission GOCE (2010), pp. 1-94. , Karlsruhe Institute of Technology, KIT Scientific Reports 7547, ISBN 978-3-86644-510-9; Grombein, T., Heck, B., Seitz, K., Optimized formulas for the gravitational field of a tesseroid (2013) J Geod, 87. , 645–600
  • Uieda, L., Ussami, N., Braitenberg, C.F., Computation of the gravity gradient tensor due to topographic masses using tesseroids (2010) Eos Trans AGU, 91 (26). , http://code.google.com/p/tesseroids/, Meeting America Supply, Abstract G22A-04. World Wide Web Address
  • Bouman, J., Ebbing, J., Fuchs, M., Reference frame transformation of satellite gravity gradients and topographic mass reduction (2013) J Geophys Res Solid Earth, 118 (2), pp. 759-774
  • Whittaker, J., Goncharov, A., Williams, S., Müller, R.D., Leitchenkov, G., Global sediment thickness dataset updated for the Australian-Antarctic Southern Ocean (2013) Geochem Geophys Geosystems, 14, pp. 3297-3305
  • Divins, D.L., Total Sediment Thickness of the World's Oceans and Marginal Seas (2003), NOAA National Geophysical Data Center Boulder, CO; Featherstone, W., On the use of the geoid in geophysics: a case study over the north west shelf of Australia (1997) Explor Geophys, 28 (1/2), pp. 52-57
  • Tilmann, F., Zhang, Y., Moreno, M., Saul, J., Eckelmann, F., Palo, M., Deng, Z., Dahm, T., The 2015 Illapel earthquake, central Chile: a type case for a characteristic earthquake? (2016) Geophys Res Lett, 43, pp. 574-583
  • Wessel, P., Smith, W.H.F., New, improved version of the generic mapping tools released (1998) Eos Trans AGU, 79 (47), p. 579

Citas:

---------- APA ----------
Álvarez, O., Folguera, A. & Gimenez, M. (2017) . Rupture area analysis of the Ecuador (Musine) Mw = 7.8 thrust earthquake on April 16, 2016, using GOCE derived gradients. Geodesy and Geodynamics, 8(1), 49-58.
http://dx.doi.org/10.1016/j.geog.2017.01.005
---------- CHICAGO ----------
Álvarez, O., Folguera, A., Gimenez, M. "Rupture area analysis of the Ecuador (Musine) Mw = 7.8 thrust earthquake on April 16, 2016, using GOCE derived gradients" . Geodesy and Geodynamics 8, no. 1 (2017) : 49-58.
http://dx.doi.org/10.1016/j.geog.2017.01.005
---------- MLA ----------
Álvarez, O., Folguera, A., Gimenez, M. "Rupture area analysis of the Ecuador (Musine) Mw = 7.8 thrust earthquake on April 16, 2016, using GOCE derived gradients" . Geodesy and Geodynamics, vol. 8, no. 1, 2017, pp. 49-58.
http://dx.doi.org/10.1016/j.geog.2017.01.005
---------- VANCOUVER ----------
Álvarez, O., Folguera, A., Gimenez, M. Rupture area analysis of the Ecuador (Musine) Mw = 7.8 thrust earthquake on April 16, 2016, using GOCE derived gradients. Geod. Geodyn. 2017;8(1):49-58.
http://dx.doi.org/10.1016/j.geog.2017.01.005