Artículo

Velasquez, S.M.; Ricardi, M.M.; Poulsen, C.P.; Oikawa, A.; Dilokpimol, A.; Halim, A.; Mangano, S.; Denita Juarez, S.P.; Marzol, E.; Salgado Salter, J.D.; Dorosz, J.G.; Borassi, C.; Möller, S.R.; Buono, R.; Ohsawa, Y.; Matsuoka, K.; Otegui, M.S.; Scheller, H.V. (...) Estevez, J.M. "Complex regulation of prolyl-4-hydroxylases impacts root hair expansion" (2015) Molecular Plant. 8(5):734-746
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Root hairs are single cells that develop by tip growth, a process shared with pollen tubes, axons, and fungal hyphae. However, structural plant cell walls impose constraints to accomplish tip growth. In addition to polysaccharides, plant cell walls are composed of hydroxyproline-rich glycoproteins (HRGPs), which include several groups of O-glycoproteins, including extensins (EXTs). Proline hydroxylation, an early post-translational modification (PTM) of HRGPs catalyzed by prolyl 4-hydroxylases (P4Hs), defines their subsequent O-glycosylation sites. In this work, our genetic analyses prove that P4H5, and to a lesser extent P4H2 and P4H13, are pivotal for root hair tip growth. Second, we demonstrate that P4H5 has in vitro preferred specificity for EXT substrates rather than for other HRGPs. Third, by P4H promoter and protein swapping approaches, we show that P4H2 and P4H13 have interchangeable functions but cannot replace P4H5. These three P4Hs are shown to be targeted to the secretory pathway, where P4H5 forms dimers with P4H2 and P4H13. Finally, we explore the impact of deficient proline hydroxylation on the cell wall architecture. Taken together, our results support a model in which correct peptidyl-proline hydroxylation on EXTs, and possibly in other HRGPs, is required for proper cell wall self-assembly and hence root hair elongation in Arabidopsis thaliana. © 2015 The Author.

Registro:

Documento: Artículo
Título:Complex regulation of prolyl-4-hydroxylases impacts root hair expansion
Autor:Velasquez, S.M.; Ricardi, M.M.; Poulsen, C.P.; Oikawa, A.; Dilokpimol, A.; Halim, A.; Mangano, S.; Denita Juarez, S.P.; Marzol, E.; Salgado Salter, J.D.; Dorosz, J.G.; Borassi, C.; Möller, S.R.; Buono, R.; Ohsawa, Y.; Matsuoka, K.; Otegui, M.S.; Scheller, H.V.; Geshi, N.; Petersen, B.L.; Iusem, N.D.; Estevez, J.M.
Filiación:Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
VKR Research Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, DK-1871, Denmark
Joint BioEnergy Institute, Feedstocks Division, Lawrence Berkeley National Laboratory, 5885 Hollis Street, Emeryville, CA 94608, United States
Copenhagen Center for Glycomics, Department of Cellular and Molecular, University of Copenhagen, Copenhagen N, DK-2200, Denmark
Department of Botany, University of Wisconsin, Madison, WI 53706, United States
RIKEN Plant Science Center, Tsurumi-ku, Yokohama, 230-0045, Japan
Laboratory of Plant Nutrition, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581, Japan
Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
Fungal Physiology, CBS-KNAW Fungal Biodiversity Center, Uppsalalaan 8, Utrecht, 3584 CT, Netherlands
Danish Stem Cell Center, Panum Institute, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark
Palabras clave:cell expansion; cell walls; enzymology; proline hydroxylation; protein targeting; root hairs; Arabidopsis thaliana; Arabidopsis protein; hydroxyproline; procollagen proline 2 oxoglutarate 4 dioxygenase; Arabidopsis; enzymology; gene expression regulation; genetics; glycosylation; growth, development and aging; hydroxylation; metabolism; multigene family; plant root; Arabidopsis; Arabidopsis Proteins; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Glycosylation; Hydroxylation; Hydroxyproline; Multigene Family; Plant Roots; Prolyl Hydroxylases
Año:2015
Volumen:8
Número:5
Página de inicio:734
Página de fin:746
DOI: http://dx.doi.org/10.1016/j.molp.2014.11.017
Título revista:Molecular Plant
Título revista abreviado:Mol. Plant
ISSN:16742052
CAS:hydroxyproline, 51-35-4, 6912-67-0; procollagen proline 2 oxoglutarate 4 dioxygenase, 9028-06-2; Arabidopsis Proteins; Hydroxyproline; Prolyl Hydroxylases
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16742052_v8_n5_p734_Velasquez

Referencias:

  • Abràmoff, M.D., Magalhães, P.J., Ram, S.J., Image processing with ImageJ (2004) Biophotonics International, 11, pp. 36-42
  • Asif, M.H., Trivedi, P.K., Misra, P., Nath, P., Prolyl-4-hydroxylase (AtP4H1) mediates and mimics low oxygen response in Arabidopsis thaliana (2009) Funct. Integr. Genomics, 9, pp. 525-535
  • Barnett, N.M., Dipyridyl-induced cell elongation and inhibition of cell wall hydroxyproline biosynthesis (1970) Plant Physiol., 45, pp. 188-191
  • Baumberger, N., Ringli, C., Keller, B., The chimeric leucine-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana (2001) Genes Dev., 15, pp. 1128-1139
  • Baumberger, N., Steiner, M., Ryser, U., Keller, B., Ringli, C., Synergistic interaction of the two paralogous Arabidopsis genes LRX1 and LRX2 in cell wall formation during root hair development (2003) Plant J., 35, pp. 71-81
  • Bergmann, D.C., Sack, F.D., Stomatal development (2007) Annu. Rev. Plant Biol., 58, pp. 163-181
  • Bernhardt, C., Tierney, M.L., Expression of AtPRP3, a proline-rich structural cell wall protein from Arabidopsis, is regulated by cell-type-specific developmental pathways involved in root hair formation (2000) Plant Physiol., 122, pp. 705-714
  • Boisson-Dernier, A., Roy, S., Kritsas, K., Grobei, M.A., Jaciubek, M., Schroeder, J.I., Grossniklaus, U., Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge (2009) Development, 136, pp. 3279-3288
  • Boron, A.K., Van Orden, J., Nektarios Markakis, M., Mouille, G., Adriaensen, D., Verbelen, J.P., Hofte, H., Vissenberg, K., Proline-rich protein-like PRPL1 controls elongation of root hairs in Arabidopsis thaliana (2014) J. Exp. Bot., 65, pp. 5485-5495
  • Cannon, M.C., Terneus, K., Hall, Q., Tan, L., Wang, Y., Wegenhart, B.L., Chen, L., Kieliszewski, M.J., Self-assembly of the plant cell wall requires an extensin scaffold (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 2226-2231
  • Cosgrove, D.J., Growth of the plant cell wall (2005) Nat. Rev. Mol. Cell Biol., 6, pp. 850-861
  • Curtis, M.D., Grossniklaus, U., A gateway cloning vector set for high-throughput functional analysis of genes in planta (2003) Plant Physiol., 133, pp. 462-469
  • Earley, K.W., Haag, J.R., Pontes, O., Opper, K., Juehne, T., Song, K., Pikaard, C.S., Gateway-compatible vectors for plant functional genomics and proteomics (2006) Plant J., 45, pp. 616-629
  • Egelund, J., Obel, N., Ulvskov, P., Geshi, N., Pauly, M., Bacic, A., Petersen, B.L., Molecular characterization of two Arabidopsis thaliana glycosyltransferase mutants, rra1 and rra2, which have a reduced residual arabinose content in a polymer tightly associated with the cellulosic wall residue (2007) Plant Mol. Biol., 64, pp. 439-451
  • Escobar-Restrepo, J.M., Huck, N., Kessler, S., Gagliardini, V., Gheyselinck, J., Yang, W.C., Grossniklaus, U., The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception (2007) Science, 317, pp. 656-660
  • Fowler, T.J., Bernhardt, C., Tierney, M.L., Characterization and expression of four proline-rich cell wall protein genes in Arabidopsis encoding two distinct subsets of multiple domain proteins (1999) Plant Physiol., 121, pp. 1081-1092
  • Gehl, C., Waadt, R., Kudla, J.R., Mendel, R.R., Hänsch, R., New GATEWAY vectors for high throughput analyses of protein-protein interactions by bimolecular fluorescence complementation (2009) Mol. Plant, 2, pp. 1051-1058
  • Gille, S., Hansel, U., Ziemann, M., Pauly, M., Identification of plant cell wall mutants by means of a forward chemical genetic approach using hydrolases (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 14699-14704
  • Giraudo, C.G., Maccioni, H.J.F., Endoplasmic reticulum export of glycosyltransferases depends on interaction of a cytoplasmic dibasic motif with Sar1 (2003) Mol. Biol. Cell, 14, pp. 3753-3766
  • Hieta, R., Myllyharju, J., Cloning and characterization of a low molecular weight prolyl 4-hydroxylase from Arabidopsis thaliana. Effective hydroxylation of proline-rich, collagen-like, and hypoxia-inducible transcription factor alpha-like peptides (2002) J. Biol. Chem., 277, pp. 23965-23971
  • Ishida, T., Kurata, T., Okada, K., Wada, T., A genetic regulatory network in the development of trichomes and root hairs (2008) Annu. Rev. Plant Biol., 59, pp. 365-386
  • Keskiaho, K., Hieta, R., Sormunen, R., Myllyharju, J., Chlamydomonas reinhardtii has multiple prolyl 4-hydroxylases, one of which is essential for proper cell wall assembly (2007) Plant Cell, 19, pp. 256-269
  • Koski, M.K., Hieta, R., Bollner, C., Kivirikko, K.I., Myllyharju, J., Wierenga, R.K., The active site of an algal prolyl 4-hydroxylase has a large structural plasticity (2007) J. Biol. Chem., 282, pp. 37112-37123
  • Koski, M.K., Hieta, R., Hirsila, M., Ronka, A., Myllyharju, J., Wierenga, R.K., The crystal structure of an algal prolyl 4-hydroxylase complexed with a proline-rich peptide reveals a novel buried tripeptide binding motif (2009) J. Biol. Chem., 284, pp. 25290-25301
  • Lamport, D.T.A., Oxygen fixation into hydroxyproline of plant cell wall protein (1963) J. Biol. Chem., 238, pp. 1438-1440
  • Lamport, D.T., Katona, L., Roerig, S., Galactosylserine in extensin (1973) Biochem. J., 133, pp. 125-132
  • Lamport, D.T., Kieliszewski, M.J., Chen, Y., Cannon, M.C., Role of the extensin superfamily in primary cell wall architecture (2011) Plant Physiol., 156, pp. 11-19
  • Lee, Y., Rubio, M.C., Alassimone, J., Geldner, N., A mechanism for localized lignin deposition in the endodermis (2013) Cell, 153, pp. 402-412
  • Majamaa, K., Gunzler, V., Hanauske-Abel, H.M., Myllyla, R., Kivirikko, K.I., Partial identity of the 2-oxoglutarate and ascorbate binding sites of prolyl 4-hydroxylase (1986) J. Biol. Chem., 261, pp. 7819-7823
  • Munro, S., An investigation of the role of transmembrane domains in Golgi protein retention (1995) EMBO J., 14, p. 4695
  • Nelson, B.K., Cai, X., Nebenfuhr, A., A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants (2007) Plant J., 51, pp. 1126-1136
  • Nilsson, T., Lucocq, J., Mackay, D., Warren, G., The membrane spanning domain of beta-1, 4-galactosyltransferase specifies trans Golgi localization (1991) EMBO J., 10, p. 3567
  • Oda, Y., Fukuda, H., Secondary cell wall patterning during xylem differentiation (2012) Curr. Opin. Plant Biol., 15, pp. 38-44
  • Ogawa-Ohnishi, M., Matsushita, W., Matsubayashi, Y., Identification of three hydroxyproline O-arabinosyltransferases in Arabidopsis thaliana (2013) Nat. Chem. Biol., 9, pp. 726-730
  • Oikawa, A., Lund, C.H., Sakuragi, Y., Scheller, H.V., Golgi-localized enzyme complexes for plant cell wall biosynthesis (2013) Trends Plant Sci., 18, pp. 49-58
  • Park, S., Szumlanski, A.L., Gu, F., Guo, F., Nielsen, E., A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells (2011) Nat. Cell Biol., 13, pp. 973-980
  • Qi, X., Behrens, B.X., West, P.R., Mort, A.J., Solubilization and partial characterization of extensin fragments from cell walls of cotton suspension cultures (evidence for a covalent cross-link between extensin and pectin) (1995) Plant Physiol., 108, pp. 1691-1701
  • Ringli, C., The hydroxyproline-rich glycoprotein domain of the Arabidopsis LRX1 requires Tyr for function but not for insolubilization in the cell wall (2010) Plant J., 63, pp. 662-669
  • Saint-Jore-Dupas, C., Gomord, V., Paris, N., Protein localization in the plant Golgi apparatus and the trans-Golgi network (2004) Cell Mol Life Sci., 61, pp. 159-171
  • Saito, F., Suyama, A., Oka, T., Yoko-O, T., Matsuoka, K., Jigami, Y., Shimma, Y.-I., Identification of novel peptidyl serine O-galactosyltransferase gene family in plants (2014) J. Biol. Chem., 289, pp. 20405-20420
  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Schmid, B., Cardona A Fiji: An open-source platform for biological-image analysis (2012) Nat. Methods, 9, pp. 676-682
  • Schmitz, K.R., Liu, J., Li, S., Setty, T.G., Wood, C.S., Burd, C.G., Ferguson, K.M., Golgi localization of glycosyltransferases requires a Vps74p oligomer (2008) Dev. Cell, 14, pp. 523-534
  • Schoberer, J., Vavra, U., Stadlmann, J., Hawes, C., Mach, L., Steinkellner, H., Strasser, R., Arginine/lysine residues in the cytoplasmic tail promote ER export of plant glycosylation enzymes (2009) Traffic, 10, pp. 101-115
  • Schoberer, J., Liebminger, E., Vavra, U., Veit, C., Castilho, A., Dicker, M., Maresch, D., Botchway, S.W., The transmembrane domain of N-acetylglucosaminyltransferase i is the key determinant for its Golgi sub-compartmentation (2014) Plant J., 80, pp. 809-822
  • Showalter, A.M., Keppler, B., Lichtenberg, J., Gu, D., Welch, L.R., A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins (2010) Plant Physiol., 153, pp. 485-513
  • Somerville, C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., Milne, J., Osborne, E., Raab, T., Toward a systems approach to understanding plant cell walls (2004) Science, 306, pp. 2206-2211
  • Sprong, H., Degroote, S., Nilsson, T., Kawakita, M., Ishida, N., Van Der Sluijs, P., Van Meer, G., Association of the Golgi UDP-galactose transporter with UDP-galactose: Ceramide galactosyltransferase allows UDP-galactose import in the endoplasmic reticulum (2003) Mol. Biol. Cell, 14, pp. 3482-3493
  • Tiainen, P., Myllyharju, J., Koivunen, P., Characterization of a second Arabidopsis thaliana prolyl 4-hydroxylase with distinct substrate specificity (2005) J. Biol. Chem., 280, pp. 1142-1148
  • Tu, L., Tai, W.C., Chen, L., Banfield, D.K., Signal-mediated dynamic retention of glycosyltransferases in the Golgi (2008) Science, 321, pp. 404-407
  • Valentin, R., Cerclier, C., Geneix, N., Aguie-Beghin, V., Gaillard, C., Ralet, M.C., Cathala, B., Elaboration of extensin-pectin thin film model of primary plant cell wall (2010) Langmuir, 26, pp. 9891-9898
  • Velasquez, S.M., Ricardi, M.M., Dorosz, J.G., Fernandez, P.V., Nadra, A.D., Pol-Fachin, L., Egelund, J., Ciancia, M., O-glycosylated cell wall proteins are essential in root hair growth (2011) Science, 332, pp. 1401-1403
  • Velasquez, S.M., Salgado Salter, J., Petersen, B.L., Estevez, J.M., Recent advances on the post-translational modifications of EXTs and their roles in plant cell walls (2012) Front. Plant Sci., 3, p. 93
  • Vlad, F., Spano, T., Vlad, D., Daher, F.B., Ouelhadj, A., Fragkostefanakis, S., Kalaitzis, P., Involvement of Arabidopsis prolyl 4 hydroxylases in hypoxia, anoxia and mechanical wounding (2007) Plant Signal. Behav., 2, pp. 368-369
  • Vlad, F., Tiainen, P., Owen, C., Spano, T., Daher, F.B., Oualid, F., Senol, N.O., Kalaitzis, P., Characterization of two carnation petal prolyl 4 hydroxylases (2010) Physiol. Plant, 140, pp. 199-207
  • Voinnet, O., Rivas, S., Mestre, P., Baulcombe, D., An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus (2003) Plant J., 33, pp. 949-956
  • Weigel, D., Glazebrook, J., (2002) Arabidopsis: A Laboratory Manual, , Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY
  • Yuasa, K., Toyooka, K., Fukuda, H., Matsuoka, K., Membrane-anchored prolyl hydroxylase with an export signal from the endoplasmic reticulum (2005) Plant J., 41, pp. 81-94

Citas:

---------- APA ----------
Velasquez, S.M., Ricardi, M.M., Poulsen, C.P., Oikawa, A., Dilokpimol, A., Halim, A., Mangano, S.,..., Estevez, J.M. (2015) . Complex regulation of prolyl-4-hydroxylases impacts root hair expansion. Molecular Plant, 8(5), 734-746.
http://dx.doi.org/10.1016/j.molp.2014.11.017
---------- CHICAGO ----------
Velasquez, S.M., Ricardi, M.M., Poulsen, C.P., Oikawa, A., Dilokpimol, A., Halim, A., et al. "Complex regulation of prolyl-4-hydroxylases impacts root hair expansion" . Molecular Plant 8, no. 5 (2015) : 734-746.
http://dx.doi.org/10.1016/j.molp.2014.11.017
---------- MLA ----------
Velasquez, S.M., Ricardi, M.M., Poulsen, C.P., Oikawa, A., Dilokpimol, A., Halim, A., et al. "Complex regulation of prolyl-4-hydroxylases impacts root hair expansion" . Molecular Plant, vol. 8, no. 5, 2015, pp. 734-746.
http://dx.doi.org/10.1016/j.molp.2014.11.017
---------- VANCOUVER ----------
Velasquez, S.M., Ricardi, M.M., Poulsen, C.P., Oikawa, A., Dilokpimol, A., Halim, A., et al. Complex regulation of prolyl-4-hydroxylases impacts root hair expansion. Mol. Plant. 2015;8(5):734-746.
http://dx.doi.org/10.1016/j.molp.2014.11.017