Artículo

Marzol, E.; Borassi, C.; Bringas, M.; Sede, A.; Rodríguez Garcia, D.R.; Capece, L.; Estevez, J.M. "Filling the Gaps to Solve the Extensin Puzzle" (2018) Molecular Plant. 11(5):645-658
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Extensins (EXTs) are highly repetitive plant O-glycoproteins that require several post-translational modifications (PTMs) to become functional in plant cell walls. First, they are hydroxylated on contiguous proline residues; then they are O-glycosylated on hydroxyproline and serine. After secretion into the apoplast, O-glycosylated EXTs form a tridimensional network organized by inter- and intra-Tyr linkages. Recent studies have made significant progress in the identification of the enzymatic machinery required to process EXTs, which includes prolyl 4-hydroxylases, glycosyltransferases, papain-type cysteine endopeptidases, and peroxidases. EXTs are abundant in plant tissues and are particularly important in rapidly expanding root hairs and pollen tubes, which grow in a polar manner. Small changes in EXT PTMs affect fast-growing cells, although the molecular mechanisms underlying this regulation are unknown. In this review, we highlight recent advances in our understanding of EXT modifications throughout the secretory pathway, EXT assembly in cell walls, and possible sensing mechanisms involving the Catharanthus roseus cell surface sensor receptor-like kinases located at the interface between the apoplast and the cytoplasmic side of the plasma membrane. This review describes recent progress in our understanding of extensin post-translational modifications throughout the secretory pathway, extensin secretion and assembly in the cell walls, and possible sensing mechanisms at the interface between the apoplast and the cytoplasmic side of the cell surface. © 2018 The Author

Registro:

Documento: Artículo
Título:Filling the Gaps to Solve the Extensin Puzzle
Autor:Marzol, E.; Borassi, C.; Bringas, M.; Sede, A.; Rodríguez Garcia, D.R.; Capece, L.; Estevez, J.M.
Filiación:Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (INQUIMAE-CONICET), Buenos Aires, CP C1428EGA, Argentina
Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
Palabras clave:Arabidopsis thaliana; cysteine endopeptidases; extensins; glycosyltransferases; peroxidases; prolyl 4-hydroxylases; extensin protein, plant; glycoprotein; plant protein; Catharanthus; cell membrane; metabolism; protein processing; Catharanthus; Cell Membrane; Glycoproteins; Plant Proteins; Protein Processing, Post-Translational
Año:2018
Volumen:11
Número:5
Página de inicio:645
Página de fin:658
DOI: http://dx.doi.org/10.1016/j.molp.2018.03.003
Título revista:Molecular Plant
Título revista abreviado:Mol. Plant
ISSN:16742052
CAS:extensin protein, plant; Glycoproteins; Plant Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16742052_v11_n5_p645_Marzol

Referencias:

  • Anderson, C.T., Wallace, I.S., Somerville, C.R., Metabolic click-labeling with a fucose analog reveals pectin delivery, architecture, and dynamics in Arabidopsis cell walls (2012) Proc. Natl. Acad. Sci. USA, 109, pp. 1329-1334
  • Ast, C., Foret, J., Oltrogge, L.M., De Michele, R., Kleist, T.J., Ho, C.H., Frommer, W.B., Ratiometric Matryoshka biosensors from a nested cassette of green- and orange-emitting fluorescent proteins (2017) Nat. Commun., 8, p. 431
  • Atmodjo, M.A., Sakuragi, Y., Zhu, X., Burrell, A.J., Mohanty, S.S., Atwood, J.A., Orlando, R., Mohnen, D., Galacturonosyltransferase (GAUT)1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan: galacturonosyltransferase complex (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 20225-20230
  • Bai, L., Zhang, G., Zhou, Y., Zhang, Z., Wang, W., Du, Y., Wu, Z., Song, C.P., Plasma membrane-associated proline-rich extensin-like receptor kinase 4, a novel regulator of Ca signalling, is required for abscisic acid responses in Arabidopsis thaliana (2009) Plant J., 60, pp. 314-327
  • Barbez, E., Dünser, K., Gaidora, A., Lendl, T., Busch, W., Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana (2017) Proc. Natl. Acad. Sci. USA, 114, pp. 4884-4893
  • Baumberger, N., Ringli, C., Keller, B., The chimeric leucine-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana (2001) Genes Dev., 15, pp. 1128-1139
  • Baumberger, N., Steiner, M., Ryser, U., Keller, B., Ringli, C., Synergistic interaction of the two paralogous Arabidopsis genes LRX1 and LRX2 in cell wall formation during root hair development (2003) Plant J., 35, pp. 71-81
  • Bennett, E.P., Mandel, U., Clausen, H., Gerken, T.A., Fritz, T.A., Tabak, L.A., Control of mucin-type O-glycosylation: a classification of the polypeptideGalNAc-transferase gene family (2012) Glycobiology, 22, pp. 736-756
  • Bernhardt, C., Tierney, M.L., Expression of AtPRP3, a proline-rich structural cell wall protein from Arabidopsis is regulated by cell-type-specific developmental pathways involved in root hair formation (2000) Plant Physiol., 122, pp. 705-714
  • Birnbaum, K., Shasha, D.E., Wang, J.Y., Jung, J.W., Lambert, G.M., Galbraith, D.W., Benfey, P.N., A gene expression map of the Arabidopsis root (2003) Science, 302, pp. 1956-1960
  • Boisson-Dernier, A., Lituiev, D.S., Nestorova, A., Franck, C.M., Thirugnanarajah, S., Grossniklaus, U., ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases (2013) PLoS Biol., 11, p. e100171
  • Boisson-Dernier, A., Franck, C.M., Lituiev, D.S., Grossniklaus, U., Receptor-like cytoplasmic kinase MARIS functions downstream of CrRLK1L-dependent signaling during tip growth (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 12211-12216
  • Borassi, C., Sede, A.S., Mecchia, M., Salgado Salter, J.D., Marzol, E., Muschietti, J.P., Estevez, J.M., An update on cell surface proteins containing Extensin-motif (2016) J. Exp. Bot., 76, pp. 477-487
  • Brady, J.D., Sadler, I.H., Fry, S.C., Di-isodityrosine, a novel tetrametric derivative of tyrosine in plant cell wall proteins: a new potential cross-link (1996) Biochem. J., 315, pp. 323-327
  • Brady, J.D., Sadler, I.H., Fry, S.C., Pulcherosine, an oxidatively coupled trimer of tyrosine in plant cell walls: its role in cross-link formation (1998) Phytochemistry, 47, pp. 349-353
  • Brady, S.M., Orlando, D.A., Lee, J.Y., Wang, J.Y., Koch, J., Dinneny, J.R., Mace, D., Benfey, P.N., A high-resolution root spatio temporal map reveals dominant expression patterns (2007) Science, 318, pp. 801-806
  • Bruex, A., Kainkaryam, R.M., Wieckowski, Y., Kang, Y.H., Bernhardt, C., Xia, Y., Zheng, X., Benfey, P., A gene regulatory network for root epidermis cell differentiation in Arabidopsis (2012) PLoS Genet., 8, p. e1002446
  • Busse-Wicher, M., Wicher, K.B., Kusche-Gullberg, M., The exostosin family: proteins with many functions (2014) Matrix Biol., 35, pp. 25-33
  • Campargue, C., Lafitte, C., Esquerré-Tugay, M.T., Mazau, D., Analysis of hydroxyproline and hydroxyproline-arabinosides of plant origin by high-performance anion exchange chromatography-pulsed amperometric detection (1998) Anal. Biochem., 257, pp. 20-25
  • Cannon, M.C., Terneus, K., Hall, Q., Tan, L., Wang, Y., Wegenhart, B.L., Chen, L., Kieliszewski, M.J., Self-assembly of the plant cell wall requires an extensin scaffold (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 2226-2231
  • Caramelo, J.J., Parodi, A.J., A sweet code for glycoprotein folding (2015) FEBS Lett., 589, pp. 3379-3387
  • Carpita, N., Tierney, M., Campbell, M., Molecular biology of the plant cell wall: searching for the genes that define structure, architecture, and dynamics (2001) Plant Mol. Biol., 47, pp. 1-5
  • Chen, Y., Dong, W., Tan, L., Held, M.A., Kieliszewski, M.J., Arabinosylation plays a crucial role in extensin cross-linking in vitro (2015) Biochem. Insights, 8, pp. 1-13
  • Cosgrove, D.J., Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes (2015) J. Exp. Bot., 67, pp. 663-676
  • Crocco, C.D., Locascio, A., Escudero, C.M., Alabadí, D., Blázquez, M.A., Botto, J.F., The transcriptional regulator BBX24 impairs DELLA activity to promote shade avoidance in Arabidopsis thaliana (2015) Nat. Commun., 6, p. 6202
  • Crooks, G.E., Hon, G., Chandonia, J.M., Brenner, S.E., WebLogo: a sequence logo generator (2004) Genome Res., 14, pp. 1188-1190
  • Datta, S., Prescott, H., Dolan, L., Intensity of a pulse of RSL4 transcription factor synthesis determines Arabidopsis root hair cell size (2015) Nat. Plants, 1, p. 15138
  • Deal, R.B., Henikoff, S., A simple method for gene expression and chromatin profiling of individual cell types within a tissue (2010) Dev. Cell, 18, pp. 1030-1040
  • Dong, W., Kieliszewski, M., Held, M.A., Identification of the pI 4.6 extensin peroxidase from Lycopersicon esculentum using proteomics and reverse-genomics (2015) Phytochem., 112, pp. 151-159
  • Draeger, C., Ndinyanka Fabrice, T., Gineau, E., Mouille, G., Kuhn, B.M., Moller, I., Abdou, M.T., Bacic, A., Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth (2015) BMC Plant Biol., 15, p. 155
  • Du, C., Li, X., Chen, J., Chen, W., Li, B., Li, C., Wang, L., Lin, J., Receptor kinase complex transmits RALF peptide signal to inhibit root grwoth in Arabidopsis (2016) Proc. Natl. Acad. Sci. USA, 113, pp. E8326-E8334
  • Duan, Q., Kita, D., Li, C., Cheung, A.Y., Wu, H.M., FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 17821-17826
  • Dunand, C., Crèvecoeur, M., Penel, C., Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases (2007) New Phytol., 174, pp. 332-341
  • Dünser, K., Gupta, S., Ringli, C., Kleine-Vehn, J., LRX- and FER-dependent extracellular sensing coordinates vacuolar size for cytosol homeostasis (2017) bioRxiv
  • Duruflé, H., Hervé, V., Balliau, T., Zivy, M., Dunand, C., Jamet, E., Proline hydroxylation in cell wall proteins: is it yet possible to define rules? (2017) Front. Plant Sci., 8, p. 1802
  • Egelund, J., Obel, N., Ulvskov, P., Geshi, N., Pauly, M., Bacic, A., Larsen Petersen, B., Molecular characterization of two Arabidopsis thaliana glycosyltransferase mutants, rra1 and rra2, which have a reduced residual arabinose content in a polymer tightly associated with the cellulosic wall residue (2007) Plant. Mol. Biol., 64, pp. 439-451
  • Ellis, M., Egelund, J., Schultz, C.J., Bacic, A., Arabinogalactan-proteins: key regulators at the cell surface? (2010) Plant Physiol., 153, pp. 403-419
  • Fabrice, T.N., Draeger, C., Munglani, G., Vogler, H., Knox, P., Grossniklaus, U., Ringli, C., LRX Proteins are required for communication processes at the plasma membrane/cell wall interface (2017) Plant Physiol.
  • Feng, Y., Xu, P., Li, B., Wen, X., An, F., Gong, Y., Xin, Y., Guo, H., Ethylene promotes root hair growth through coordinated EIN3/EIL1 and RHD6/RSL1 activity in Arabidopsis (2017) Proc. Natl. Acad. Sci. USA
  • Feng, W., Kita, D., Peaucelle, A., Cartwright, H.N., Doan, V., Duan, Q., Liu, M.C., Schmitz-Thom, I., The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca signaling (2018) Curr. Biol., 28, pp. 1-10
  • Ge, Z., Bergonci, T., Zhao, Y., Zou, Y., Du, S., Liu, M.C., Luo, X., Zhong, S., Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling (2017) Science
  • Geilfus, C.M., Mühling, K.H., Kaiser, H., Plieth, C., Bacterially produced Pt-GFP as ratiometric dual-excitation sensor for in planta mapping of leaf apoplastic pH in intact Avena sativa and Vicia faba (2014) Plant Methods, 10, p. 31
  • Gille, S., Hänsel, U., Ziemann, M., Pauly, M., Identification of plant cell wall mutants by means of a forward chemical genetic approach using hydrolases (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 14699-14704
  • Gorres, K.L., Raines, R.T., Prolyl 4-hydroxylases (2010) Crit. Rev. Biochem. Mol. Biol., 45, pp. 106-124
  • Gronnier, J., Crowet, J.M., Habenstein, B., Nasir, M.N., Bayle, V., Hosy, E., Platre, M.P., Martinez, D., Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains (2017) Elife, 6
  • Haruta, M., Sabat, G., Stecker, K., Minkoff, B.B., Sussman, M.R., A peptide hormone and its receptor protein kinase regulate plant cell expansion (2014) Science, 343, pp. 408-411
  • He, X., Kermode, A.R., Proteases associated with programmed cell death of megagametophyte cells after germination of white spruce (Picea glauca) seeds (2003) Plant Mol. Biol., 52, pp. 729-744
  • Held, M.A., Tan, L., Kamyab, A., Hare, M., Shpak, E., Kieliszewski, M.J., Di-isodityrosine is the intermolecular cross-link of isodityrosine-rich extensin analogs cross-linked in vitro (2004) J. Biol. Chem., 279, pp. 55474-55482
  • Helm, M., Schmid, M., Hierl, G., Terneus, K., Tan, L., Lottspeich, F., Kieliszewski, M.J., Gietl, C., KDEL-tailed cysteine endopeptidases involved in programmed cell death, intercalation of new cells, and dismantling of extensin scaffolds (2008) Am. J. Bot., 95, pp. 1049-1062
  • Hierl, G., Vothknecht, U., Gietl, C., Programmed cell death in Ricinus and Arabidopsis: the function of KDEL cysteine peptidases in development (2012) Physiol. Plant, 145, pp. 103-113
  • Hierl, G., Howing, T., Isono, E., Lottspeich, F., Gietl, C., Ex vivo processing for maturation of Arabidopsis KDEL-tailed cysteine endopeptidase 2 (AtCEP2) pro-enzyme and its storage in endoplasmic reticulum derived organelles (2013) Plant Mol. Biol., 84, pp. 605-620
  • Hieta, R., Myllyharju, J., Cloning and characterization of a low molecular weight prolyl 4-hydroxylase from Arabidopsis thaliana. Effective hydroxylation of proline-rich, collagen-like, and hypoxia-inducible transcription factor alpha-like peptides (2002) J. Biol. Chem., 277, pp. 23965-23971
  • Humphrey, T.V., Haasen, K.E., Aldea-Brydges, M.G., Sun, H., Zayed, Y., Indriolo, E., Goring, D.R., PERK-KIPK-KCBP signalling negatively regulates root growth in Arabidopsis thaliana (2015) J. Exp. Bot., 66, pp. 71-83
  • Hwang, Y., Lee, H., Lee, Y.S., Cho, H.T., Cell wall-associated ROOT HAIR SPECIFIC 10, a proline-rich receptor-like kinase, is a negative modulator of Arabidopsis root hair growth (2016) J. Exp. Bot., 67, pp. 2007-2022
  • Hwang, Y., Choi, H.S., Cho, H.M., Cho, H.T., Tracheophytes contain conserved orthologs of a basic helix-loop-helix transcription factor to modulate ROOT HAIR SPECIFIC genes (2017) Plant Cell, 29, pp. 39-53
  • Ishiwata, A., Kaeothip, S., Takeda, Y., Ito, Y., Synthesis of the highly glycosylated hydrophilic motif of extensins (2014) Angew. Chem. Int. Ed., 53, pp. 9812-9816
  • Ito, Y., Nakanomyo, I., Motose, H., Iwamoto, K., Sawa, S., Dohmae, N., Fukuda, H., Dodeca-CLE peptides as suppressors of plant stem cell differentiation (2006) Science, 313, pp. 842-845
  • Jackson, P.A., Galinha, C.I., Pereira, C.S., Fortunato, A., Soares, N.C., Amâncio, S.B., Ricardo, C.P.P., Rapid deposition of extensin during the elicitation of grapevine callus cultures is specifically catalyzed by a 40-kilodalton peroxidase (2001) Plant Physiol., 127, pp. 1065-1076
  • Johnson, K.L., Cassin, A.M., Lonsdale, A., Bacic, A., Doblin, M.S., Schultz, C.J., A motif and amino acid bias bioinformatic pipeline to identify hydroxyproline-rich glycoproteins (2017) Plant Physiol., 174, pp. 886-903
  • Keskiaho, K., Hieta, R., Sormunen, R., Myllyharju, J., Chlamydomonas reinhardtii has multiple prolyl 4-hydroxylases, one of which is essential for proper cell wall assembly (2007) Plant Cell, 19, pp. 256-269
  • Kieliszewski, M.J., The latest hype on Hyp-O-glycosylation codes (2001) Phytochemistry, 57, pp. 319-323
  • Kieliszewski, M.J., Lamport, D.T.A., Tan, L., Cannon, M.C., Hydroxyproline-rich glycoproteins: form and function (2011) Annu. Plant Rev., 41, pp. 321-342
  • Kim, Y.E., Hipp, M.S., Bracher, A., Hayer-Hartl, M., Hartl, F.U., Molecular chaperone functions in protein folding and proteostasis (2013) Annu. Rev. Biochem., 82, pp. 323-355
  • Kleine-Vehn, J., Wabnik, K., Martiniere, A., Langowski, L., Willig, K., Naramoto, S., Leitner, J., Robert, S., Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane (2011) Mol. Syst. Biol., 7, p. 540
  • Koski, M.K., Hieta, R., Böllner, C., Kivirikko, K.I., Myllyharju, J., Wierenga, R.K., The active site of an algal prolyl 4-hydroxylase has a large structural plasticity (2007) J. Biol. Chem., 282, pp. 37112-37123
  • Koski, M.K., Hieta, R., Hirsilä, M., Rönkä, A., Myllyharju, J., Wierenga, R.K., The crystal structure of an algal prolyl 4-hydroxylase complexed with a proline-rich peptide reveals a novel buried tripeptide binding motif (2009) J. Biol. Chem., 284, pp. 25290-25301
  • Lamport, D.T., Kieliszewski, M.J., Chen, Y., Cannon, M.C., Role of the extensin superfamily in primary cell wall architecture (2011) Plant Physiol., 156, pp. 11-19
  • Li, C., Wu, H.M., Cheung, A.Y., FERONIA and her pals: functions and mechanisms (2016) Plant Physiol., 171, pp. 2379-2392
  • Liao, H., Tang, R., Zhang, X., Luan, S., Yu, F., FERONIA Receptor Kinase at the crossroads of hormone signaling and stress responses (2017) Plant Cell Physiol., 58, pp. 1143-1150
  • Liesche, J., Ziomkiewicz, I., Schulz, A., Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells (2013) BMC Plant Biol., 13, p. 226
  • Liu, X., Wolfe, R., Welch, L.R., Domozych, D.S., Popper, Z.A., Showalter, A.M., Bioinformatic identification and analysis of extensins in the plant kingdom (2016) PLoS One, 11, p. e0150177
  • Lu, D., Wang, T., Persson, S., Mueller-Roeber, B., Schippers, J.H.M., Transcriptional control of ROS homeostasis by KUODA1 regulates cell expansion during leaf development (2014) Nat. Commun., 5, p. 3767
  • Mangano, S., Denita, S.P., Estevez, J.M., ROS control of polar-growth in plant cells (2016) Plant Physiol., 171, pp. 1593-1605
  • Mangano, S., Denita-Juarez, S.P., Choi, H.S., Marzol, E., Hwang, Y., Ranocha, P., Velasquez, S.M., Aptekmann, A.A., The molecular link between auxin and ROS-controlled root hair growth (2017) Proc. Natl. Acad. Sci. USA, 114, pp. 5289-5294
  • Marzol, E., Borassi, C., Denita Juárez, S.P., Mangano, S., Estevez, J.M., RSL4 takes control: multiple signals; one transcription factor (2017) Trends Plant Sci., 22, pp. 553-555
  • Matsuzaki, Y., Ogawa-Ohnishi, M., Mori, A., Matsubayashi, Y., Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis (2010) Science, 329, pp. 1065-1067
  • McClosky, D.D., Wang, B., Chen, G., Anderson, C.T., The click-compatible sugar 6-deoxy-alkynyl glucose metabolically incorporates into Arabidopsis root hair tips and arrests their growth (2016) Phytochemistry, 123, pp. 16-24
  • Mecchia, M.A., Santos-Fernandez, G., Duss, N.N., Somoza, S.C., Boisson-Dernier, A., Gagliardini, V., Martínez-Bernardini, A., Muschietti, J.P., RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis (2017) Science, 358, pp. 1600-1603
  • Miyazaki, S., Murata, T., Sakurai-Ozato, N., Kubo, M., Demura, T., Fukuda, H., Hasebe, M., ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization (2009) Curr. Biol., 19, pp. 1327-1331
  • Møller, S.R., Yi, X., Velásquez, S.M., Gille, S., Hansen, P.L., Poulsen, C.P., Olsen, C.E., Yang, Z., Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD (2017) Sci. Rep., 7, p. 45341
  • Mutwil, M., Klie, S., Tohge, T., Giorgi, F.M., Wilkins, O., Campbell, M.M., Fernie, A.R., Persson, S., PlaNet: combined sequence and expression comparisons across plant networks derived from seven species (2011) Plant Cell, 23, pp. 895-910
  • Myllyharju, J., Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis (2003) Matrix Biol., 22, pp. 15-24
  • Nissen, K.S., Willats, W.G.T., Malinovsky, F.G., Understanding CrRLK1L function: cell walls and growth control (2016) Trends Plant Sci., 21, pp. 516-527
  • Nuñez, A., Fishman, M.L., Fortis, L.L., Cooke, P.H., Hotchkiss, A.T., Jr., Identification of extensin protein associated with sugar beet pectin (2009) J. Agric. Food Chem., 57, pp. 10951-10958
  • Obayashi, T., Aoki, Y., Tadaka, S., Kagaya, Y., Kinoshita, K., ATTED-II in 2018: a plant coexpression database based on investigation of statistical property of the mutual rank index (2018) Plant Cell Physiol., 59, p. 440
  • Ogawa-Ohnishi, M., Matsushita, W., Matsubayashi, Y., Identification of three hydroxyproline O-arabinosyltransferases in Arabidopsis thaliana (2013) Nat. Chem. Biol., 9, pp. 726-730
  • Ohyama, K., Shinohara, H., Ogawa-Ohnishi, M., Matsubayashi, Y., A glycopeptide regulating stem cell fate in Arabidopsis thaliana (2009) Nat. Chem. Biol., 5, pp. 578-580
  • Owens, N.W., Stetefeld, J., Lattová, E., Schweizer, F., Contiguous O-galactosylation of 4(R)-hydroxy-l-proline residues forms very stable polyproline II helices (2010) J. Am. Chem. Soc., 132, pp. 5036-5042
  • Parsons, J., Altmann, F., Graf, M., Stadlmann, J., Reski, R., Decker, E.V., A gene responsible for prolyl-hydroxylation of moss-produced recombinant human erythropoietin (2013) Sci. Rep., 3, p. 3019
  • Passardi, F., Penel, C., Dunand, C., Performing the paradoxical: how plant peroxidases modify the cell wall (2004) Trends Plant Sci., 9, pp. 534-540
  • Price, N.J., Pinheiro, C., Soares, C.M., Ashford, D.A., Ricardo, C.P., Jackson, P.A., A biochemical and molecular characterization of LEP1, an extensin peroxidase from lupin (2003) J. Biol. Chem., 278, pp. 41389-41399
  • Ringli, C., The hydroxyproline-rich glycoprotein domain of the Arabidopsis LRX1 requires Tyr for function but not for insolubilization in the cell wall (2010) Plant J., 63, pp. 662-669
  • Saito, F., Suyama, A., Oka, T., Yoko-o, T., Matsuoka, K., Jigami, Y., Shimma, Y., Identification of novel peptidyl serine O-galactosyltransferase gene family in plants (2014) J. Biol. Chem., 30, pp. 20405-20420
  • Schmid, M., Simpson, D., Gietl, C., Programmed cell death in castor bean endosperm is associated with the accumulation and release of a cysteine endopeptidase from ricinosomes (1999) Proc. Natl. Acad. Sci. USA, 96, pp. 14159-14164
  • Schnabelrauch, L.S., Kieliszewski, M., Upham, B.L., Alizedeh, H., Lamport, D., Isolation of pl 4.6 extensin peroxidase from tomato cell suspension cultures and identification of Val-Tyr-Lys as putative intermolecular cross-link site (1996) Plant J., 9, pp. 477-489
  • Sede, A.R., Borassi, C., Wengier, D.L., Mecchia, M.A., Estevez, J.M., Muschietti, J.P., Arabidopsis pollen extensins LRX are required for cell wall integrity during pollen tube growth (2017) FEBS Lett., 592, pp. 233-243
  • Shibata, M., Breuer, C., Kawamura, A., Clark, N.M., Rymen, B., Braidwood, L., Morohashi, K., Sozzani, R., GTL1 and DF1 regulate root hair growth through transcriptional repression of ROOT HAIR DEFECTIVE 6-LIKE 4 in Arabidopsis (2018) Development, 145
  • Shinohara, H., Matsubayashi, Y., Chemical synthesis of Arabidopsis CLV3 glycopeptide reveals the impact of hydroxyproline arabinosylation on peptide conformation and activity (2013) Plant Cell Physiol., 54, pp. 369-374
  • Showalter, A.M., Keppler, B., Lichtenberg, J., Gu, D., Welch, L.R., A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins (2010) Plant Physiol., 153, pp. 485-513
  • Showalter, A.M., Keppler, B.D., Liu, X., Lichtenberg, J., Welch, L.R., Bioinformatic identification and analysis of hydroxyproline-rich glycoproteins in Populus trichocarpa (2016) BMC Plant Biol., 16, p. 229
  • Shpak, E., Leykam, J.F., Kieliszewski, M.J., Synthetic genes for glycoprotein design and the elucidation of hydroxyproline-O-glycosylation codes (1999) Proc. Natl. Acad. Sci. USA, 96, pp. 14736-14741
  • Song, L., Yu, H., Dong, J., Che, X., Jiao, Y., Liu, D., The molecular mechanism of ethylene-mediated root hair development induced by phosphate starvation (2016) PLoS Genet., 12, p. e1006194
  • Stafstrom, J.P., Staehelin, L.A., The role of carbohydrate in maintaining extensin in an extended conformation (1986) Plant Physiol., 81, pp. 242-246
  • Stegmann, M., Monaghan, J., Smakowska-Luzan, E., Rovenich, H., Lehner, A., Holton, N., Belkhadir, Y., Zipfel, C., The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling (2017) Science, 355, pp. 287-289
  • Sundaravelpandian, K., Chandrika, N.N., Schmidt, W., PFT1, a transcriptional mediator complex subunit, controls root hair differentiation through reactive oxygen species (ROS) distribution in Arabidopsis (2013) New Phytol., 197, pp. 151-161
  • Tan, L., Varnai, P., Lamport, D.T., Yuan, C., Xu, J., Qiu, F., Kieliszewski, M.J., Plant O-hydroxyproline arabinogalactans are composed of repeating trigalactosyl subunits with short bifurcated side chains (2010) J. Biol. Chem., 285, pp. 24575-24583
  • Tiainen, P., Myllyharju, J., Koivunen, P., Characterization of a second Arabidopsis thaliana prolyl 4-hydroxylase with distinct substrate specificity (2005) J. Biol. Chem., 280, pp. 1142-1148
  • Toufighi, K., Brady, S.M., Austin, R., Ly, E., Provart, N.J., The Botany Array Resource: e-Northerns, Expression Angling, and promoter analyses (2005) Plant J., 43, pp. 153-163
  • Valentin, R., Cerclier, C., Geneix, N., Aguié-Béhin, V., Gaillard, C., Ralet, M.C., Cathala, B., Elaboration of extensin-pectin thin film model of primary plant cell wall (2010) Langmuir, 26, pp. 9891-9898
  • Velasquez, S.M., Ricardi, M.M., Dorosz, J.G., Fernandez, P.V., Nadra, A.D., Pol-Fachin, L., Egelund, J., Verli, H., O-glycosylated cell wall extensins are essential in root hair growth (2011) Science, 332, pp. 1401-1403
  • Velasquez, S.M., Marzol, E., Borassi, C., Pol-Fachin, L., Ricardi, M.M., Mangano, S., Juarez, S.P., Marcus, S.E., Low sugar is not always good: impact of specific O-glycan defects on tip growth in Arabidopsis (2015) Plant Physiol., 168, pp. 808-813
  • Velasquez, S.M., Ricardi, M.M., Poulsen, C.P., Oikawa, A., Dilokpimol, A., Halim, A., Mangano, S., Salgoda Salter, J.D., Complex regulation of prolyl-4-hydroxylases impacts root hair expansion (2015) Mol. Plant, 8, pp. 734-746
  • Vembar, S.S., Brodsky, J.L., One step at a time: endoplasmic reticulum-associated degradation (2008) Nat. Rev. Mol. Cell Biol., 9, pp. 944-957
  • Waadt, R., Krebs, M., Kudla, J., Schumacher, K., Multiparameter imaging of calcium and abscisic acid and high-resolution quantitative calcium measurements using R-GECO1-mTurquoise in Arabidopsis (2017) New Phytol., 216, pp. 303-320
  • Wang, X.X., Wang, K., Liu, X.Y., Liu, M., Cao, N., Duan, Y., Yin, G., Ge, W., Pollen-expressed Leucin-rich-repeat extensins are essential for pollen germination and growth (2017) Plant Physiol.
  • Wojtaszek, P., Trethowan, J., Bolwell, G.P., Reconstitution in vitro of the components and conditions required for the oxidative cross-linking of extracellular proteins in French bean (Phaseolus vulgaris L.) (1997) FEBS Lett., 405, pp. 95-98
  • Xu, C., Wang, S., Thibault, G., Ng, D.T., Futile protein folding cycles in the ER are terminated by the unfolded protein O-mannosylation pathway (2013) Science, 340, pp. 978-981
  • Xu, P., Cai, X.T., Wang, Y., Xing, L., Chen, Q., Xiang, C.B., HDG11 upregulates cell-wall-loosening protein genes to promote root elongation in Arabidopsis (2014) J. Exp. Bot., 65, pp. 4285-4295
  • Yi, K., Menand, B., Bell, E., Dolan, L., A basic helix-loop-helix transcription factor controls cell growth and size in root hairs (2010) Nat. Genet., 42, pp. 264-267
  • Yuasa, K., Toyooka, K., Fukuda, H., Matsuoka, K., Membrane-anchored prolyl hydroxylase with an export signal from the endoplasmic reticulum (2005) Plant J., 41, pp. 81-94
  • Zhang, D., Liu, D., Lv, X., Wang, Y., Xun, Z., Liu, Z., Li, F., Lu, H., The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis (2014) Plant Cell, 26, pp. 2939-2961
  • Zhou, L.-Z., Höwing, T., Müller, B., Hammes, U.Z., Getl, C., Dresselhaus, T., Expression analysis of KDEL CysEPs programmed cell death markers during reproduction in Arabidopsis (2016) Plant Reprod., 29, pp. 265-272

Citas:

---------- APA ----------
Marzol, E., Borassi, C., Bringas, M., Sede, A., Rodríguez Garcia, D.R., Capece, L. & Estevez, J.M. (2018) . Filling the Gaps to Solve the Extensin Puzzle. Molecular Plant, 11(5), 645-658.
http://dx.doi.org/10.1016/j.molp.2018.03.003
---------- CHICAGO ----------
Marzol, E., Borassi, C., Bringas, M., Sede, A., Rodríguez Garcia, D.R., Capece, L., et al. "Filling the Gaps to Solve the Extensin Puzzle" . Molecular Plant 11, no. 5 (2018) : 645-658.
http://dx.doi.org/10.1016/j.molp.2018.03.003
---------- MLA ----------
Marzol, E., Borassi, C., Bringas, M., Sede, A., Rodríguez Garcia, D.R., Capece, L., et al. "Filling the Gaps to Solve the Extensin Puzzle" . Molecular Plant, vol. 11, no. 5, 2018, pp. 645-658.
http://dx.doi.org/10.1016/j.molp.2018.03.003
---------- VANCOUVER ----------
Marzol, E., Borassi, C., Bringas, M., Sede, A., Rodríguez Garcia, D.R., Capece, L., et al. Filling the Gaps to Solve the Extensin Puzzle. Mol. Plant. 2018;11(5):645-658.
http://dx.doi.org/10.1016/j.molp.2018.03.003