Artículo

Andrioli, N.B.; Chaufan, G.; Coalova, I.; Ríos De Molina, M.C.; Mudry, M.D. "HEp-2 cell line as an experimental model to evaluate genotoxic effects of pentavalent inorganic arsenic" (2017) BAG - Journal of Basic and Applied Genetics. 28(2):15-24
Estamos trabajando para incorporar este artículo al repositorio
Consulte la política de Acceso Abierto del editor

Abstract:

Early detection of toxic events induced by xenobiotics is necessary for a proper assessment of human risk after the exposure to those agents. The aim of this work was to evaluate the cell line HEp-2 as an experimental model to determine the genotoxic effects of sodium arsenate. To this end, we determined the metabolic activity cells by the MTT test on seven concentrations of arsenate that range from 27 to 135,000 μM, obtaining the median lethal concentration (LC50), the lowest observed effect concentration (LOEC), and the not observed effect concentration (NOEC) of sodium arsenate at 24 h of exposition. According to the cytotoxic response obtained, we evaluated the genotoxic effect of the 27 and 270 μM concentrations by using the micronucleus assay and chromosomal aberrations test. We found a statistically significant increase (p<0.05) in the frequency of micronuclei between control cultures and those exposed to the highest concentration of sodium arsenate. Furthermore, the frequencies of nucleoplasmic bridges and tripolar mitosis were significantly higher in cell cultures exposed to the above concentrations compared to the control cultures (p<0.05). The participation of the glutathione system as response to the arsenate exposition was also analyzed, and a statistically significant increase in the glutathione content was found in those cells exposed to 27 μM of arsenate. The Glutathione S-transferase activity did not increase in the exposed cells compared to control cells, suggesting that the arsenate reduction involved other metabolic pathways in the HEp-2 cells. These results confirm that, under the conditions carried out in this study, sodium arsenate is genotoxic for HEp-2 cells. Therefore, we suggest that this cell line would be a good model for the assessment of the cytotoxic and genotoxic effects of xenobiotics on human cells. © 2017 Sociedad Argentina de Genetica. All rights reserved.

Registro:

Documento: Artículo
Título:HEp-2 cell line as an experimental model to evaluate genotoxic effects of pentavalent inorganic arsenic
Autor:Andrioli, N.B.; Chaufan, G.; Coalova, I.; Ríos De Molina, M.C.; Mudry, M.D.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Grupo de Investigación en Biología Evolutiva (GIBE), CONICET-Universidad de Buenos Aires, Instituto Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Enzimología, Estrés y Metabolismo (LEEM), CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
Palabras clave:Cytotoxicity; Genotoxicity; Glutathione; HEp-2 cell line; arsenate sodium; glutathione; glutathione transferase; Article; chromosome aberration; concentration (parameters); controlled study; cytotoxicity; enzyme activity; evaluation study; experimental model; genotoxicity; HEp-2 cell line; human; human cell; LC50; lowest observed effect concentration; micronucleus; micronucleus test; MTT assay
Año:2017
Volumen:28
Número:2
Página de inicio:15
Página de fin:24
Título revista:BAG - Journal of Basic and Applied Genetics
Título revista abreviado:BAG J. Basic Appl. Genet.
ISSN:16660390
CODEN:BAGAB
CAS:arsenate sodium, 7631-89-2; glutathione, 70-18-8; glutathione transferase, 50812-37-8
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16660390_v28_n2_p15_Andrioli

Referencias:

  • Ahamed, M., Alhadlaq, H.A., Ahmad, J., Siddiqui, M.A., Khan, S.T., Musarrat, J., Al-Khedhairy, A.A., Comparative cytotoxicity of dolomite nanoparticles in human larynx HEp2 and liver HepG2 cells (2015) J. App. Toxicol, 35 (6), pp. 640-650
  • Ahmed, S., Khoda, S.M.E., Rekha, R.S., Gardner, R.M., Ameer, S.S., Moore, S., Raqib, R., Arsenicassociated oxidative stress, inflammation, and immune disruption in human placenta and cord blood (2011) Environ. Health Persp, 119 (2), pp. 258-264
  • Albiano, N.F., Villamil Lepori, E., (2015) Toxicologia Laboral: Criterios Para el Monitoreo de la Salud de los Trabajadores Expuestos a Sustancias Quimicas Peligrosas/Ampliada, p. 522. , Buenos Aires: Superintendencia de riesgos del trabajo
  • Anderson, M.E., Determination of glutathione and glutathione disulfide in biological samples (1985) Methods Enzymol, 113, pp. 548-553
  • Andrighetti-Fröhner, C.R., Kratz, J.M., Antonio, R.V., Creczynski-Pasa, T.B., Barardi, C.R., Simões, C.M., In vitro testing for genotoxicity of violacein assessed by Comet and Micronucleus assays (2006) Mutat. Res, 603 (1), pp. 97-103
  • Basu, A., Ghosh, P., Das, J.K., Banerjee, A., Ray, K., Giri, A.K., Micronuclei as biomarkers of carcinogen exposure in populations exposed to arsenic through drinking water in West Bengal, India: A comparative study in three cell types (2004) Cancer Epidemiol Biomarkers Prev, 13 (5), pp. 820-827
  • Carmichael, J., Mitchell, J.B., Frietman, N., Gaznard, A.F., Russo, A., Glutathion and related enzyme activity in human lung cancer cell lines (1988) Br. J. Cancer, 58 (4), pp. 437-440
  • Coalova, I., Ríos De Molina, M.C., Chaufan, G., Influence of the spray adjuvant on the toxicity effects of a glyphosate formulation. Toxicol (2014) Vitro, 28 (7), pp. 1306-1311
  • Dopp, E., Hartmann, L.M., Florea, A.M., Von Recklinghausen, U., Pieper, R., Shokouhi, B., Obe, G., Uptake of inorganic and organic derivatives of arsenic associated with induced cytotoxic and genotoxic effects in Chinese hamster ovary (CHO) cells (2004) Toxicol. Appl. Pharm, 201 (2), pp. 156-165
  • Dos Santos Branco, C., De Lima, E.D., Rodrigues, T.S., Scheffel, T.B., Scola, G., Laurino, C.C.F.C., Salvador, M., Mitochondria and redox homoeostasis as chemotherapeutic targets of Araucaria angustifolia (Bert.) O. Kuntze in human larynx HEp-2 cancer cells (2015) Chem-Biol. Interact, 231, pp. 108-118
  • Elhajouji, A., Tibaldi, F., Kirsch-Volders, M., Indication for thresholds of chromosome non-disjunction versus chromosome lagging induced by spindle inhibitors in vitro in human lymphocytes (1997) Mutagenesis, 12 (3), pp. 133-140
  • National pr imar y drinking water regulations, arsenic and clarifications to compliance and new source contaminants monitoring, final rule (2001) Federal Register, 66, pp. 6976-7066. , Environmental Protection Agency
  • (2007) European Chemical Substances Information System (ESIS), , European Chemicals Bureau
  • Fenech, M., Cytokinesis-block micronucleus cytome assay (2007) Nat. Prot, 2 (5), pp. 1084-1104
  • Florea, A.M., Yamoah, E.N., Dopp, E., Intracellular calcium disturbances induced by arsenic and its methylated derivatives in relation to genomic damage and apoptosis induction (2005) Environ. Health Persp, 113 (6), pp. 659-664
  • Gebel, T.W., Genotoxicity of arsenical compounds (2001) Int. J. Hyg. Environ. Health, 203 (3), pp. 249-262
  • Gomaa, I.E., Bhatt, S., Liehr, T., Bakr, M., El-Tayeb, T.A., Ag and Co/Ag nanoparticles cytotoxicity and genotoxicity study on hep-2 and blood lymphocytes cells (2015) Chemical Technology: Key Developments in Applied Chemistry. Biochemistry and Materials Science 13
  • Habig, W.H., Pabst, M.J., Jakoby, W.B., Glutathione S-transferase a from rat liver (1976) Arch. Biochem. Biophys, 175 (2), pp. 710-716
  • Huff, J., Chan, P., Nyska, A., Is the human carcinogen arsenic carcinogenic to laboratory animals? (2000) Toxicol. Sci, 55 (1), pp. 17-23
  • Hughes, M.F., Beck, B.D., Chen, Y., Lewis, A.S., Thomas, D.J., Arsenic exposure and toxicology: A historical perspective (2011) Toxicol. Sci, 123 (2), pp. 305-332
  • Some drinking-water disinfectants and contaminants, including arsenic, IARC Monogr (2004) Eval. Carcinog. Risks Hum, 84, pp. 1-477. , IARC
  • Kirsch-Volders, M., Vanhauwaert, A., Eichenlaub-Ritter, U., Decordier, I., Indirect mechanisms of genotoxicity Toxicol (2003) Lett, 140, pp. 63-74
  • Kitchin, K.T., Recent advances in arsenic carcinogenesis: Modes of action, animal model systems, and methylated arsenic metabolites (2001) Toxicol. Appl. Pharmacol, 172 (3), pp. 249-261
  • Kligerman, A.D., Doerr, C.L., Tennant, A.H., Harrington Brock, K., Allen, J.W., Winkfield, E., Mass, M.J., Methylated trivalent arsenicals as candidate ultimate genotoxic forms of arsenic: Induction of chromosomal mutations but not gene mutations (2003) Environ. Mol. Mutagen, 42 (3), pp. 192-205
  • Kochhar, T.S., Howard, W., Hoffman, S., Brammer-Carleton, L., Effect of trivalent and pentavalent arsenic in causing chromosome alterations in cultured Chinese hamster ovary (CHO) cells (1996) Toxicol. Lett, 84 (1), pp. 37-42
  • Liao, W.T., Lin, P., Cheng, T.S., Yu, H.S., Chang, L.W., Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells (2007) Toxicol. Appl. Pharmacol, 225 (2), pp. 162-170
  • Miller, W.H., Schipper, H.M., Lee, J.S., Singer, J., Waxman, S., Mechanisms of action of arsenic trioxide (2002) Cancer Res, 62 (14), pp. 3893-3903
  • Mossman, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays (1983) J. Immunol. Methods, 65, pp. 55-63
  • Nakamuro, K., Sayato, Y., Comparative studies of chromosomal aberration induced by trivalent and pentavalent arsenic (1987) Mutat. Res, 88 (1), pp. 3-80
  • Odanaka, Y., Matano, O., Goto, S., Biomethylation of inorganic arsenic by the rat and some laboratory animals (1980) Bull. Environ. Contam. Toxicol, 24 (1), pp. 452-459
  • Osman, I.F., Baumgartner, A., Cemeli, E., Fletcher, J.N., Anderson, D., Genotoxicity and cytotoxicity of zinc oxide and titanium dioxide in HEp-2 cells (2005) Nanomedicine, 8, pp. 1193-1203
  • Oya-Ohta, Y., Kaise, T., Ochi, T., Induction of chromosomal aberrations in cultured human fibroblasts by inorganic and organic arsenic compounds and the different roles of glutathione in such induction (1996) Mutat. Res, 357 (1-2), pp. 123-129
  • Peel, A.E., Brice, A., Marzin, D., Erb, F., Cellular uptake and biotransformation of arsenic V in transformed human cell Lines HeLa S 3 and Hep G 2 (1991) Toxicol.in Vitro, 5 (2), pp. 165-168
  • Raisuddin, S., Jha, A.N., Relative sensitivity of fish and mammalian cells to sodium arsenate and arsenite as determined by alkaline single cell gel electrophoresis and cytokinesi block micronucleus assay (2004) Environ. Mol. Mutagen, 44 (1), pp. 83-89
  • Raja, W.K., Satti, J., Liu, G., Castracane, J., Dose response of MTLn3 cells to serial dilutions of arsenic trioxide and ionizing radiation (2013) Dose-response, 11 (1)
  • Rizo, W.F., Ferreira, L.E., Colnaghi, V., Martins, J.S., Franchi, L.P., Takahashi, C.S., Fachin, A.L., Cytotoxicity and genotoxicity of coronaridine from Tabernaemontanacatharinensis A. DC in a human laryngeal epithelial carcinoma cell line (Hep-2) (2013) Genet. Mol. Biol, 36 (1), pp. 105-110
  • Rossman, T.G., Klein, C.B., Genetic and epigenetic effects of environmental arsenicals (2011) Metallomic, 3 (11), pp. 1135-1141
  • Rossman, T.G., Stone, D., Molina, M., Troll, W., Absence of arsenite mutagenicity in E. Coli and Chinese hamster cells (1980) Environ. Mutagen, 2 (3), pp. 371-379
  • Rudel, R., Slayton, T.M., Beck, B.D., Implications of arsenic genotoxicity for dose response of carcinogenic effects (1996) Regul. Toxicol. Pharm, 23 (2), pp. 87-105
  • Schuhmacher-Wolz, U., Dieter, H.H., Klein, D., Schneider, K., Oral exposure to inorganic arsenic: Evaluation of its carcinogenic and non-carcinogenic effects (2009) Crit. Rev. Toxicol, 39 (4), pp. 271-298
  • Sciandrello, G., Barbaro, R., Caradonna, F., Barbata, G., Early induction of genetic instability and apoptosis by arsenic in cultured Chinese hamster cells (2002) Mutagenesis, 17 (2), pp. 99-103
  • Summer, K.H., Wiebel, F.J., Glutathione and glutathione S-transferase activities of mammalian cells in culture (1981) Toxicol. Lett, 9 (4), pp. 409-413
  • Talorete, T.P.N., Bouaziz, M., Sayadi, S., Isoda, H., Influence of medium type and serum on MTT reduction by flavonoids in the absence of cells (2007) Cytotechnology, 52, pp. 189-198
  • Thompson, D.J., A chemical hypothesis for arsenic methylation in mammals (1993) Chemi-Biol. Interact, 88 (2), pp. 89-114
  • Tokar, E.J., Benbrahim-Tallaa, L., Ward, J.M., Lunn, R., Sans, R.L., Waalkes, M.P., Cancer in experimental animals exposed to arsenic and arsenic compounds (2010) Crit. Rev. Toxicol, 40, pp. 912-927
  • Tokar, E.J., Diwan, B.A., Ward, J.M., Delker, D.A., Waalkes, M.P., Carcinogenic effect of 'whole-life' exposure to inorganic arsenic in CD 1 mice (2011) Toxicol. Sci, 119, pp. 73-83
  • Vahter, M., Mechanisms of arsenic biotransformation (2002) Toxicology, 181, pp. 211-217
  • Waalkes, M.P., Liu, J., Diwan, B.A., Transplacental arsenic carcinogenesis in mice (2007) Toxicol. Appl. Pharmacol, 222, pp. 271-280
  • Westerink, W.M., Schirris, T.J., Horbach, G.J., Schoonen, W.G., Development and validation of a high-content screening in vitro micronucleus assay in CHO-k1 and HepG2 cells (2001) Mutat. Res, 724 (1-2), pp. 7-21
  • Wilkening, S., Stahl, F., Bade, A., Comparison of primary human hepatocytes and hepatoma cell line Hepg2 with regard to their biotransformation properties (2003) Drug Metab. Dispos, 31 (8), pp. 1035-1042
  • Yadav, K.K., Trivedi, S.P., Sublethal exposure of heavy metals induces micronuclei in fish, Channa punctate (2009) Chemosphere, 77 (11), pp. 1495-1500

Citas:

---------- APA ----------
Andrioli, N.B., Chaufan, G., Coalova, I., Ríos De Molina, M.C. & Mudry, M.D. (2017) . HEp-2 cell line as an experimental model to evaluate genotoxic effects of pentavalent inorganic arsenic. BAG - Journal of Basic and Applied Genetics, 28(2), 15-24.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16660390_v28_n2_p15_Andrioli [ ]
---------- CHICAGO ----------
Andrioli, N.B., Chaufan, G., Coalova, I., Ríos De Molina, M.C., Mudry, M.D. "HEp-2 cell line as an experimental model to evaluate genotoxic effects of pentavalent inorganic arsenic" . BAG - Journal of Basic and Applied Genetics 28, no. 2 (2017) : 15-24.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16660390_v28_n2_p15_Andrioli [ ]
---------- MLA ----------
Andrioli, N.B., Chaufan, G., Coalova, I., Ríos De Molina, M.C., Mudry, M.D. "HEp-2 cell line as an experimental model to evaluate genotoxic effects of pentavalent inorganic arsenic" . BAG - Journal of Basic and Applied Genetics, vol. 28, no. 2, 2017, pp. 15-24.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16660390_v28_n2_p15_Andrioli [ ]
---------- VANCOUVER ----------
Andrioli, N.B., Chaufan, G., Coalova, I., Ríos De Molina, M.C., Mudry, M.D. HEp-2 cell line as an experimental model to evaluate genotoxic effects of pentavalent inorganic arsenic. BAG J. Basic Appl. Genet. 2017;28(2):15-24.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16660390_v28_n2_p15_Andrioli [ ]