Artículo

Wightman, F.F.; Giono, L.E.; Fededa, J.P.; De La Mata, M. "Target RNAs strike back on MicroRNAs" (2018) Frontiers in Genetics. 9(OCT)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

MicroRNAs are extensively studied regulatory non-coding small RNAs that silence animal genes throughout most biological processes, typically doing so by binding to partially complementary sequences within target RNAs. A plethora of studies has described detailed mechanisms for microRNA biogenesis and function, as well as their temporal and spatial regulation during development. By inducing translational repression and/or degradation of their target RNAs, microRNAs can contribute to achieve highly specific cell-or tissue-specific gene expression, while their aberrant expression can lead to disease. Yet an unresolved aspect of microRNA biology is how such small RNA molecules are themselves cleared from the cell, especially under circumstances where fast microRNA turnover or specific degradation of individual microRNAs is required. In recent years, it was unexpectedly found that binding of specific target RNAs to microRNAs with extensive complementarity can reverse the outcome, triggering degradation of the bound microRNAs. This emerging pathway, named TDMD for Target RNA-Directed MicroRNA Degradation, leads to microRNA 3′-end tailing by the addition of A/U non-templated nucleotides, trimming or shortening from the 3′ end, and highly specific microRNA loss, providing a new layer of microRNA regulation. Originally described in flies and known to be triggered by viral RNAs, novel endogenous instances of TDMD have been uncovered and are now starting to be understood. Here, we review our current knowledge of this pathway and its potential role in the control and diversification of microRNA expression patterns. © 2018 Fuchs Wightman, Giono, Fededa and de la Mata.

Registro:

Documento: Artículo
Título:Target RNAs strike back on MicroRNAs
Autor:Wightman, F.F.; Giono, L.E.; Fededa, J.P.; De La Mata, M.
Filiación:Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Palabras clave:Argonaute; Degradation; Exoribonuclease; MicroRNA; Tailing And trimming; TDMD; Terminal nucleotidyl transferase; Uridylation; argonaute protein; microRNA; nucleotide; RNA; small untranslated RNA; virus RNA; 3' untranslated region; binding site; gene cluster; gene expression regulation; gene loss; gene repression; gene silencing; gene targeting; nonhuman; Review; RNA degradation; tissue specificity
Año:2018
Volumen:9
Número:OCT
DOI: http://dx.doi.org/10.3389/fgene.2018.00435
Título revista:Frontiers in Genetics
Título revista abreviado:Front. Genet.
ISSN:16648021
CAS:RNA, 63231-63-0
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16648021_v9_nOCT_p_Wightman

Referencias:

  • Abe, M., Yoshikawa, T., Nosaka, M., Sakakibara, H., Sato, Y., Nagato, Y., WAVY LEAF1, an ortholog of Arabidopsis HEN1, regulates shoot development by maintaining MicroRNA and transacting small interfering RNA accumulation in rice (2010) Plant Physiol., 154, pp. 1335-1346
  • Agarwal, V., Bell, G.W., Nam, J.W., Bartel, D.P., Predicting effective microRNA target sites in mammalian mRNAs (2015) ELife, 4, p. e05005
  • Agranat-Tamir, L., Shomron, N., Sperling, J., Sperling, R., Interplay between pre-mRNA splicing and microRNA biogenesis within the supraspliceosome (2014) Nucleic Acids Res., 42, pp. 4640-4651
  • Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., Clustering and conservation patterns of human microRNAs (2005) Nucleic Acids Res., 33, pp. 2697-2706
  • Ameres, S.L., Horwich, M.D., Hung, J.H., Xu, J., Ghildiyal, M., Weng, Z., Target RNA-directed trimming and tailing of small silencing RNAs (2010) Science, 328, pp. 1534-1539
  • Ameres, S.L., Hung, J.H., Xu, J., Weng, Z., Zamore, P.D., Target RNA-directed tailing and trimming purifies the sorting of endo-siRNAs between the two Drosophila Argonaute proteins (2011) RNA, 17, pp. 54-63
  • Ameres, S.L., Martinez, J., Schroeder, R., Molecular basis for target RNA recognition and cleavage by human RISC (2007) Cell, 130, pp. 101-112
  • Ameres, S.L., Zamore, P.D., Diversifying microRNA sequence and function (2013) Nat. Rev. Mol. Cell Biol., 14, pp. 475-488
  • Baccarini, A., Chauhan, H., Gardner, T.J., Jayaprakash, A.D., Sachidanandam, R., Brown, B.D., Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells (2011) Curr. Biol., 21, pp. 369-376
  • Bail, S., Swerdel, M., Liu, H., Jiao, X., Goff, L.A., Hart, R.P., Differential regulation of microRNA stability (2010) RNA, 16, pp. 1032-1039
  • Bartel, D.P., MicroRNAs: Target recognition and regulatory functions (2009) Cell, 136, pp. 215-233
  • Bartel, D.P., Metazoan MicroRNAs (2018) Cell, 173, pp. 20-51
  • Bell, M.L., Buvoli, M., Leinwand, L.A., Uncoupling of expression of an intronic microRNA and its myosin host gene by exon skipping (2010) Mol. Cell. Biol., 30, pp. 1937-1945
  • Bernstein, E., Caudy, A.A., Hammond, S.M., Hannon, G.J., Role for a bidentate ribonuclease in the initiation step of RNA interference (2001) Nature, 409, pp. 363-366
  • Billi, A.C., Alessi, A.F., Khivansara, V., Han, T., Freeberg, M., Mitani, S., The Caenorhabditis elegans HEN1 ortholog, HENN-1, methylates and stabilizes select subclasses of germline small RNAs (2012) PLoS Genet., 8
  • Bitetti, A., Mallory, A.C., Golini, E., Carrieri, C., Gutiérrez, H.C., Perlas, E., MicroRNA degradation by a conserved target RNA regulates animal behavior (2018) Nat. Struct. Mol. Biol., 25, pp. 244-251
  • Blin, K., Dieterich, C., Wurmus, R., Rajewsky, N., Landthaler, M., Akalin, A., DoRiNA 2.0-upgrading the doRiNA database of RNA interactions in post-transcriptional regulation (2015) Nucleic Acids Res., 43, pp. D160-D167
  • Boele, J., Persson, H., Shin, J.W., Ishizu, Y., Newie, I.S., Sokilde, R., PAPD5-mediated 3' adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 11467-11472
  • Bohnsack, M.T., Czaplinski, K., Gorlich, D., Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs (2004) RNA, 10, pp. 185-191
  • Bosse, G.D., Ruegger, S., Ow, M.C., Vasquez-Rifo, A., Rondeau, E.L., Ambros, V.R., The decapping scavenger enzyme DCS-1 controls microRNA levels in Caenorhabditis elegans (2013) Mol. Cell., 50, pp. 281-287
  • Bosson, A.D., Zamudio, J.R., Sharp, P.A., Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition (2014) Mol. Cell., 56, pp. 347-359
  • Brancati, G., Grosshans, H., An interplay of miRNA abundance and target site architecture determines miRNA activity and specificity (2018) Nucleic Acids Res., 46, pp. 3259-3269
  • Broderick, J.A., Salomon, W.E., Ryder, S.P., Aronin, N., Zamore, P.D., Argonaute protein identity and pairing geometry determine cooperativity in mammalian RNA silencing (2011) RNA, 17, pp. 1858-1869
  • Broughton, J.P., Lovci, M.T., Huang, J.L., Yeo, G.W., Pasquinelli, A.E., Pairing beyond the seed supports MicroRNA targeting specificity (2016) Mol. Cell., 64, pp. 320-333
  • Buck, A.H., Perot, J., Chisholm, M.A., Kumar, D.S., Tuddenham, L., Cognat, V., Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection (2010) RNA, 16, pp. 307-315
  • Burns, D.M., D'Ambrogio, A., Nottrott, S., Richter, J.D., CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation (2011) Nature, 473, pp. 105-108
  • Burroughs, A.M., Ando, Y., De Hoon, M.J., Tomaru, Y., Nishibu, T., Ukekawa, R., A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness (2010) Genome Res., 20, pp. 1398-1410
  • Cai, X., Hagedorn, C.H., Cullen, B.R., Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs (2004) RNA, 10, pp. 1957-1966
  • Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., MicroRNA-133 controls cardiac hypertrophy (2007) Nat. Med., 13, pp. 613-618
  • Cazalla, D., Yario, T., Steitz, J.A., Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA (2010) Science, 328, pp. 1563-1566
  • Cesana, M., Cacchiarelli, D., Legnini, I., Santini, T., Sthandier, O., Chinappi, M., A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA (2011) Cell, 147, pp. 358-369
  • Chang, H.M., Triboulet, R., Thornton, J.E., Gregory, R.I., A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway (2013) Nature, 497, pp. 244-248
  • Chatterjee, S., Grosshans, H., Active turnover modulates mature microRNA activity in Caenorhabditis elegans (2009) Nature, 461, pp. 546-549
  • Chen, X., MicroRNA biogenesis and function in plants (2005) FEBS Lett., 579, pp. 5923-5931
  • Chi, S.W., Zang, J.B., Mele, A., Darnell, R.B., Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps (2009) Nature, 460, pp. 479-486
  • Cui, Y., Xiao, Z., Chen, T., Wei, J., Chen, L., Liu, L., The miR-7 identified from collagen biomaterial-based three-dimensional cultured cells regulates neural stem cell differentiation (2014) Stem Cells Dev., 23, pp. 393-405
  • D'Ambrogio, A., Gu, W., Udagawa, T., Mello, C.C., Richter, J.D., Specific miRNA stabilization by Gld2-catalyzed monoadenylation (2012) Cell Rep., 2, pp. 1537-1545
  • Das, S.K., Sokhi, U.K., Bhutia, S.K., Azab, B., Su, Z.Z., Sarkar, D., Human polynucleotide phosphorylase selectively and preferentially degrades microRNA-221 in human melanoma cells (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 11948-11953
  • De, N., Young, L., Lau, P.-W., Meisner, N.-C., Morrissey, Davidâ, V., Highly complementary target RNAs promote release of guide RNAs from human Argonaute2 (2013) Mol. Cell., 50, pp. 344-355
  • De La Mata, M., Gaidatzis, D., Vitanescu, M., Stadler, M.B., Wentzel, C., Scheiffele, P., Potent degradation of neuronal miRNAs induced by highly complementary targets (2015) EMBO Rep., 16, pp. 500-511
  • Denzler, R., Agarwal, V., Stefano, J., Bartel, D.P., Stoffel, M., Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance (2014) Mol. Cell., 54, pp. 766-776
  • Denzler, R., McGeary, S.E., Title, A.C., Agarwal, V., Bartel, D.P., Stoffel, M., Impact of MicroRNA Levels, target-site complementarity, and cooperativity on competing endogenous RNA-Regulated gene expression (2016) Mol. Cell., 64, pp. 565-579
  • Diederichs, S., Haber, D.A., Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression (2007) Cell, 131, pp. 1097-1108
  • Dreyfus, M., Regnier, P., The poly(A) tail of mRNAs: Bodyguard in eukaryotes, scavenger in bacteria (2002) Cell, 111, pp. 611-613
  • Ebert, M.S., Neilson, J.R., Sharp, P.A., MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells (2007) Nat. Methods, 4, pp. 721-726
  • Eulalio, A., Huntzinger, E., Izaurralde, E., GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay (2008) Nat. Struct. Mol. Biol., 15, pp. 346-353
  • Fabian, M.R., Mathonnet, G., Sundermeier, T., Mathys, H., Zipprich, J.T., Svitkin, Y.V., Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation (2009) Mol. Cell., 35, pp. 868-880
  • Faehnle, C.R., Elkayam, E., Haase, A.D., Hannon, G.J., Joshua-Tor, L., The making of a slicer: Activation of human Argonaute-1 (2013) Cell Rep., 3, pp. 1901-1909
  • Faehnle, C.R., Walleshauser, J., Joshua-Tor, L., Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway (2014) Nature, 514, pp. 252-256
  • Forstemann, K., Horwich, M.D., Wee, L., Tomari, Y., Zamore, P.D., Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1 (2007) Cell, 130, pp. 287-297
  • Franco-Zorrilla, J.M., Valli, A., Todesco, M., Mateos, I., Puga, M.I., Rubio-Somoza, I., Target mimicry provides a new mechanism for regulation of microRNA activity (2007) Nat. Genet., 39, pp. 1033-1037
  • Friedman, R.C., Farh, K.K., Burge, C.B., Bartel, D.P., Most mammalian mRNAs are conserved targets of microRNAs (2009) Genome Res., 19, pp. 92-105
  • Gallouzi, I.E., Wilusz, J., A DIStinctively novel exoribonuclease that really likes U (2013) EMBO J., 32, pp. 1799-1801
  • Gantier, M.P., McCoy, C.E., Rusinova, I., Saulep, D., Wang, D., Xu, D., Analysis of microRNA turnover in mammalian cells following Dicer1 ablation (2011) Nucleic Acids Res., 39, pp. 5692-5703
  • Gatfield, D., Le Martelot, G., Vejnar, C.E., Gerlach, D., Schaad, O., Fleury-Olela, F., Integration of microRNA miR-122 in hepatic circadian gene expression (2009) Genes Dev., 23, pp. 1313-1326
  • Gentner, B., Schira, G., Giustacchini, A., Amendola, M., Brown, B.D., Ponzoni, M., Stable knockdown of microRNA in vivo by lentiviral vectors (2009) Nat. Methods, 6, pp. 63-66
  • Ghini, F., Rubolino, C., Climent, M., Simeone, I., Marzi, M.J., Nicassio, F., Endogenous transcripts control miRNA levels and activity in mammalian cells by target-directed miRNA degradation (2018) Nat. Commun., 9, p. 3119
  • Giraldez, A.J., Mishima, Y., Rihel, J., Grocock, R.J., Van Dongen, S., Inoue, K., Zebrafish miR-430 promotes deadenylation and clearance of maternal mRNAs (2006) Science, 312, pp. 75-79
  • Glock, C., Heumuller, M., Schuman, E.M., MRNA transport & local translation in neurons (2017) Curr. Opin. Neurobiol., 45, pp. 169-177
  • Grimson, A., Farh, K.K.-H., Johnston, W.K., Garrett-Engele, P., Lim, L.P., Bartel, D.P., MicroRNA targeting specificity in mammals: Determinants beyond seed pairing (2007) Mol. Cell., 27, pp. 91-105
  • Grimson, A., Srivastava, M., Fahey, B., Woodcroft, B.J., Chiang, H.R., King, N., Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals (2008) Nature, 455, pp. 1193-1197
  • Grishok, A., Pasquinelli, A.E., Conte, D., Li, N., Parrish, S., Ha, I., Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. Elegans developmental timing (2001) Cell, 106, pp. 23-34
  • Guo, Y., Liu, J., Elfenbein, S.J., Ma, Y., Zhong, M., Qiu, C., Characterization of the mammalian miRNA turnover landscape (2015) Nucleic Acids Res., 43, pp. 2326-2341
  • Guo, Y.E., Riley, K.J., Iwasaki, A., Steitz, J.A., Alternative capture of noncoding RNAs or protein-coding genes by herpesviruses to alter host T cell function (2014) Mol. Cell., 54, pp. 67-79
  • Guo, Y.E., Steitz, J.A., Virus meets host microRNA: The destroyer, the booster, the hijacker (2014) Mol. Cell. Biol., 34, pp. 3780-3787
  • Ha, M., Kim, V.N., Regulation of microRNA biogenesis (2014) Nat. Rev. Mol. Cell Biol., 15, pp. 509-524
  • Haas, G., Cetin, S., Messmer, M., Chane-Woon-Ming, B., Terenzi, O., Chicher, J., Identification of factors involved in target RNA-directed microRNA degradation (2016) Nucleic Acids Res., 44, pp. 2873-2887
  • Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP (2010) Cell, 141, pp. 129-141
  • Hagan, J.P., Piskounova, E., Gregory, R.I., Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells (2009) Nat. Struct. Mol. Biol., 16, pp. 1021-1025
  • Haley, B., Zamore, P.D., Kinetic analysis of the RNAi enzyme complex (2004) Nat. Struct. Mol. Biol., 11, pp. 599-606
  • Hansen, T.B., Jensen, T.I., Clausen, B.H., Bramsen, J.B., Finsen, B., Damgaard, C.K., Natural RNA circles function as efficient microRNA sponges (2013) Nature, 495, pp. 384-388
  • Hansen, T.B., Wiklund, E.D., Bramsen, J.B., Villadsen, S.B., Statham, A.L., Clark, S.J., MiRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA (2011) EMBO J., 30, pp. 4414-4422
  • Haraguchi, T., Ozaki, Y., Iba, H., Vectors expressing efficient RNA decoys achieve the longterm suppression of specific microRNA activity in mammalian cells (2009) Nucleic Acids Res., 37, p. e43
  • Hausser, J., Syed, A.P., Selevsek, N., Van Nimwegen, E., Jaskiewicz, L., Aebersold, R., Timescales and bottlenecks in miRNA-dependent gene regulation (2013) Mol. Syst. Biol., 9, p. 711
  • Hausser, J., Zavolan, M., Identification and consequences of miRNA-target interactions-beyond repression of gene expression (2014) Nat. Rev. Genet., 15, pp. 599-612
  • Helwak, A., Kudla, G., Dudnakova, T., Tollervey, D., Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding (2013) Cell, 153, pp. 654-665
  • Heo, I., Ha, M., Lim, J., Yoon, M.J., Park, J.E., Kwon, S.C., Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs (2012) Cell, 151, pp. 521-532
  • Heo, I., Joo, C., Kim, Y.K., Ha, M., Yoon, M.J., Cho, J., TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation (2009) Cell, 138, pp. 696-708
  • Holt, C.E., Schuman, E.M., The central dogma decentralized: New perspectives on RNA function and local translation in neurons (2013) Neuron, 80, pp. 648-657
  • Horwich, M.D., Li, C., Matranga, C., Vagin, V., Farley, G., Wang, P., The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC (2007) Curr. Biol., 17, pp. 1265-1272
  • Houwing, S., Kamminga, L.M., Berezikov, E., Cronembold, D., Girard, A., Van Den Elst, H., A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish (2007) Cell, 129, pp. 69-82
  • Hsu, K.M., Pratt, J.R., Akers, W.J., Achilefu, S.I., Yokoyama, W.M., Murine cytomegalovirus displays selective infection of cells within hours after systemic administration (2009) J. Gen. Virol., 90, pp. 33-43
  • Hutvagner, G., McLachlan, J., Pasquinelli, A.E., Balint, E., Tuschl, T., Zamore, P.D., A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA (2001) Science, 293, pp. 834-838
  • Hutvagner, G., Simard, M.J., Argonaute proteins: Key players in RNA silencing (2008) Nat. Rev. Mol. Cell Biol., 9, pp. 22-32
  • Hwang, H.W., Wentzel, E.A., Mendell, J.T., A hexanucleotide element directs microRNA nuclear import (2007) Science, 315, pp. 97-100
  • Ibrahim, F., Rohr, J., Jeong, W.J., Hesson, J., Cerutti, H., Untemplated oligoadenylation promotes degradation of RISC-cleaved transcripts (2006) Science, 314, p. 1893
  • Ibrahim, F., Rymarquis, L.A., Kim, E.J., Becker, J., Balassa, E., Green, P.J., Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 3906-3911
  • Iwasaki, S., Kobayashi, M., Yoda, M., Sakaguchi, Y., Katsuma, S., Suzuki, T., Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes (2010) Mol. Cell., 39, pp. 292-299
  • Janas, M.M., Wang, B., Harris, A.S., Aguiar, M., Shaffer, J.M., Subrahmanyam, Y.V., Alternative RISC assembly: Binding and repression of microRNA-mRNA duplexes by human Ago proteins (2012) RNA, 18, pp. 2041-2055
  • Ji, L., Chen, X., Regulation of small RNA stability: Methylation and beyond (2012) Cell Res., 22, pp. 624-636
  • Jonas, S., Izaurralde, E., Towards a molecular understanding of microRNA-mediated gene silencing (2015) Nat. Rev. Genet., 16, pp. 421-433
  • Jones, M.R., Quinton, L.J., Blahna, M.T., Neilson, J.R., Fu, S., Ivanov, A.R., Zcchc11-dependent uridylation of microRNA directs cytokine expression (2009) Nat. Cell Biol., 11, pp. 1157-1163
  • Jones-Rhoades, M.W., Bartel, D.P., Bartel, B., MicroRNAS and their regulatory roles in plants (2006) Annu. Rev. Plant Biol., 57, pp. 19-53
  • Kamminga, L.M., Luteijn, M.J., Den Broeder, M.J., Redl, S., Kaaij, L.J., Roovers, E.F., Hen1 is required for oocyte development and piRNA stability in zebrafish (2010) EMBO J., 29, pp. 3688-3700
  • Katoh, T., Hojo, H., Suzuki, T., Destabilization of microRNAs in human cells by 3' deadenylation mediated by PARN and CUGBP1 (2015) Nucleic Acids Res., 43, pp. 7521-7534
  • Katoh, T., Sakaguchi, Y., Miyauchi, K., Suzuki, T., Kashiwabara, S., Baba, T., Selective stabilization of mammalian microRNAs by 3' adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2 (2009) Genes Dev., 23, pp. 433-438
  • Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U., Segal, E., The role of site accessibility in microRNA target recognition (2007) Nat. Genet., 39, pp. 1278-1284
  • Ketting, R.F., Fischer, S.E., Bernstein, E., Sijen, T., Hannon, G.J., Plasterk, R.H., Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. Elegans (2001) Genes Dev., 15, pp. 2654-2659
  • Khan, A.A., Betel, D., Miller, M.L., Sander, C., Leslie, C.S., Marks, D.S., Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs (2009) Nat. Biotechnol., 27, pp. 549-555
  • Khvorova, A., Reynolds, A., Jayasena, S.D., Functional siRNAs and miRNAs exhibit strand bias (2003) Cell, 115, pp. 209-216
  • Kim, J.H., Richter, J.D., Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation (2006) Mol. Cell., 24, pp. 173-183
  • Kirino, Y., Mourelatos, Z., Mouse Piwi-interacting RNAs are 2'-O-methylated at their 3' termini (2007) Nat. Struct. Mol. Biol., 14, pp. 347-348
  • Kirino, Y., Mourelatos, Z., The mouse homolog of HEN1 is a potential methylase for Piwi-interacting RNAs (2007) RNA, 13, pp. 1397-1401
  • Kleaveland, B., Shi, C.Y., Stefano, J., Bartel, D.P., A network of noncoding regulatory RNAs Acts in the mammalian brain (2018) Cell, 174, pp. 350e17-362e17
  • Krol, J., Busskamp, V., Markiewicz, I., Stadler, M.B., Ribi, S., Richter, J., Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs (2010) Cell, 141, pp. 618-631
  • Krol, J., Loedige, I., Filipowicz, W., The widespread regulation of microRNA biogenesis, function and decay (2010) Nat. Rev. Genet., 11, pp. 597-610
  • Krutzfeldt, J., Kuwajima, S., Braich, R., Rajeev, K.G., Pena, J., Tuschl, T., Specificity, duplex degradation and subcellular localization of antagomirs (2007) Nucleic Acids Res., 35, pp. 2885-2892
  • Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K.G., Tuschl, T., Manoharan, M., Silencing of microRNAs in vivo with 'antagomirs' (2005) Nature, 438, pp. 685-689
  • Lagos-Quintana, M., Rauhut, R., Lendeckel, W., Tuschl, T., Identification of novel genes coding for small expressed RNAs (2001) Science, 294, pp. 853-858
  • Lau, N.C., Lim, L.P., Weinstein, E.G., Bartel, D.P., An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans (2001) Science, 294, pp. 858-862
  • Lee, S., Song, J., Kim, S., Kim, J., Hong, Y., Kim, Y., Selective degradation of host MicroRNAs by an intergenic HCMV noncoding RNA accelerates virus production (2013) Cell Host Microbe, 13, pp. 678-690
  • Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., The nuclear RNase III Drosha initiates microRNA processing (2003) Nature, 425, pp. 415-419
  • Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., MicroRNA genes are transcribed by RNA polymerase II (2004) EMBO J., 23, pp. 4051-4060
  • Lewis, B.P., Burge, C.B., Bartel, D.P., Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets (2005) Cell, 120, pp. 15-20
  • Li, J., Yang, Z., Yu, B., Liu, J., Chen, X., Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis (2005) Curr. Biol., 15, pp. 1501-1507
  • Libri, V., Helwak, A., Miesen, P., Santhakumar, D., Borger, J.G., Kudla, G., Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target (2012) Proc. Natl. Acad. Sci. USA, 109, pp. 279-284
  • Licatalosi, D.D., Mele, A., Fak, J.J., Ule, J., Kayikci, M., Chi, S.W., HITS-CLIP yields genome-wide insights into brain alternative RNA processing (2008) Nature, 456, pp. 464-469
  • Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs (2005) Nature, 433, pp. 769-773
  • Lingel, A., Simon, B., Izaurralde, E., Sattler, M., Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain (2003) Nature, 426, pp. 465-469
  • Lingel, A., Simon, B., Izaurralde, E., Sattler, M., Nucleic acid 3'-end recognition by the Argonaute2 PAZ domain (2004) Nat. Struct. Mol. Biol., 11, pp. 576-577
  • Liu, Q., Rand, T.A., Kalidas, S., Du, F., Kim, H.E., Smith, D.P., R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway (2003) Science, 301, pp. 1921-1925
  • Lu, S., Sun, Y.H., Chiang, V.L., Adenylation of plant miRNAs (2009) Nucleic Acids Res., 37, pp. 1878-1885
  • Lubas, M., Damgaard, C.K., Tomecki, R., Cysewski, D., Jensen, T.H., Dziembowski, A., Exonuclease hDIS3L2 specifies an exosome-independent 3'-5' degradation pathway of human cytoplasmic mRNA (2013) EMBO J., 32, pp. 1855-1868
  • Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E., Kutay, U., Nuclear export of microRNA precursors (2004) Science, 303, pp. 95-98
  • Ma, J.B., Yuan, Y.R., Meister, G., Pei, Y., Tuschl, T., Patel, D.J., Structural basis for 5'-end-specific recognition of guide RNA by the A. Fulgidus Piwi protein (2005) Nature, 434, pp. 666-670
  • Malecki, M., Viegas, S.C., Carneiro, T., Golik, P., Dressaire, C., Ferreira, M.G., The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway (2013) EMBO J., 32, pp. 1842-1854
  • Mansur, F., Ivshina, M., Gu, W., Schaevitz, L., Stackpole, E., Gujja, S., Gld2-catalyzed 3' monoadenylation of miRNAs in the hippocampus has no detectable effect on their stability or on animal behavior (2016) RNA, 22, pp. 1492-1499
  • Marcinowski, L., Tanguy, M., Krmpotic, A., Rädle, B., Lisnic, V.J., Tuddenham, L., Degradation of Cellular miR-27 by a novel, highly abundant viral transcript is important for efficient virus replication in Vivo (2012) PLoS Pathog., 8
  • Martin, G., Keller, W., RNA-specific ribonucleotidyl transferases (2007) RNA, 13, pp. 1834-1849
  • Marzi, M.J., Ghini, F., Cerruti, B., De Pretis, S., Bonetti, P., Giacomelli, C., Degradation dynamics of microRNAs revealed by a novel pulse-chase approach (2016) Genome Res., 26, pp. 554-565
  • McCaskill, J., Praihirunkit, P., Sharp, P.M., Buck, A.H., RNA-mediated degradation of microRNAs: A widespread viral strategy? (2015) RNA Biol., 12, pp. 579-585
  • Mellman, D.L., Gonzales, M.L., Song, C., Barlow, C.A., Wang, P., Kendziorski, C., A PtdIns4,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs (2008) Nature, 451, pp. 1013-1017
  • Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Circular RNAs are a large class of animal RNAs with regulatory potency (2013) Nature, 495, pp. 333-338
  • Miranda, K.C., Huynh, T., Tay, Y., Ang, Y.S., Tam, W.L., Thomson, A.M., A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes (2006) Cell, 126, pp. 1203-1217
  • Miyoshi, T., Takeuchi, A., Siomi, H., Siomi, M.C., A direct role for Hsp90 in pre-RISC formation in Drosophila (2010) Nat. Struct. Mol. Biol., 17, pp. 1024-1026
  • Mogilyansky, E., Rigoutsos, I., The miR-17/92 cluster: A comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease (2013) Cell Death Differ., 20, pp. 1603-1614
  • Moore, M.J., Scheel, T.K., Luna, J.M., Park, C.Y., Fak, J.J., Nishiuchi, E., MiRNA-target chimeras reveal miRNA 3'-end pairing as a major determinant of Argonaute target specificity (2015) Nat. Commun., 6, p. 8864
  • Nakanishi, K., Ascano, M., Gogakos, T., Ishibe-Murakami, S., Serganov, A.A., Briskin, D., Eukaryote-specific insertion elements control human ARGONAUTE slicer activity (2013) Cell Rep., 3, pp. 1893-1900
  • Nakanishi, K., Weinberg, D.E., Bartel, D.P., Patel, D.J., Structure of yeast Argonaute with guide RNA (2012) Nature, 486, pp. 368-374
  • Norbury, C.J., Cytoplasmic RNA: A case of the tail wagging the dog (2013) Nat. Rev. Mol. Cell Biol., 14, pp. 643-653
  • Park, J.H., Shin, S.Y., Shin, C., Non-canonical targets destabilize microRNAs in human Argonautes (2017) Nucleic Acids Res., 45, pp. 1569-1583
  • Parker, J.S., Roe, S.M., Barford, D., Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex (2005) Nature, 434, pp. 663-666
  • Pawlica, P., Moss, W.N., Steitz, J.A., Host miRNA degradation by Herpesvirus saimiri small nuclear RNA requires an unstructured interacting region (2016) RNA, 22, pp. 1181-1189
  • Pelisson, A., Sarot, E., Payen-Groschene, G., Bucheton, A., A novel repeat-associated small interfering RNA-mediated silencing pathway downregulates complementary sense gypsy transcripts in somatic cells of the Drosophila ovary (2007) J. Virol., 81, pp. 1951-1960
  • Pinzon, N., Li, B., Martinez, L., Sergeeva, A., Presumey, J., Apparailly, F., MicroRNA target prediction programs predict many false positives (2017) Genome Res., 27, pp. 234-245
  • Piwecka, M., Glazar, P., Hernandez-Miranda, L.R., Memczak, S., Wolf, S.A., Rybak-Wolf, A., Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function (2017) Science, 357, p. EAAM8526
  • Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W.J., Pandolfi, P.P., A coding-independent function of gene and pseudogene mRNAs regulates tumour biology (2010) Nature, 465, pp. 1033-1038
  • Rajasethupathy, P., Fiumara, F., Sheridan, R., Betel, D., Puthanveettil, S.V., Russo, J.J., Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB (2009) Neuron, 63, pp. 803-817
  • Ramachandran, V., Chen, X., Degradation of microRNAs by a family of exoribonucleases in Arabidopsis (2008) Science, 321, pp. 1490-1492
  • Reimao-Pinto, M.M., Manzenreither, R.A., Burkard, T.R., Sledz, P., Jinek, M., Mechtler, K., Molecular basis for cytoplasmic RNA surveillance by uridylation-triggered decay in Drosophila (2016) EMBO J., 35, pp. 2417-2434
  • Ren, G., Chen, X., Yu, B., Uridylation of miRNAs by hen1 suppressor1 in Arabidopsis (2012) Curr. Biol., 22, pp. 695-700
  • Rissland, O.S., Hong, S.-J., Bartel, D.P., MicroRNA destabilization enables dynamic regulation of the miR-16 family in response to cell-cycle changes (2011) Mol. Cell., 43, pp. 993-1004
  • Rodriguez, A., Vigorito, E., Clare, S., Warren, M.V., Couttet, P., Soond, D.R., Requirement of bic/microRNA-155 for normal immune function (2007) Science, 316, pp. 608-611
  • Ruegger, S., Grosshans, H., MicroRNA turnover: When, how, and why (2012) Trends Biochem. Sci., 37, pp. 436-446
  • Saetrom, P., Heale, B.S., Snøve, O., Jr., Aagaard, L., Alluin, J., Rossi, J.J., Distance constraints between microRNA target sites dictate efficacy and cooperativity (2007) Nucleic Acids Res., 35, pp. 2333-2342
  • Saito, K., Sakaguchi, Y., Suzuki, T., Suzuki, T., Siomi, H., Siomi, M.C., Pimet, the Drosophila homolog of HEN1, mediates 2'-O-methylation of Piwi-interacting RNAs at their 3' ends (2007) Genes Dev., 21, pp. 1603-1608
  • Salmena, L., Poliseno, L., Tay, Y., Kats, L., Pandolfi, P.P., A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? (2011) Cell, 146, pp. 353-358
  • Salomon, W.E., Jolly, S.M., Moore, M.J., Zamore, P.D., Serebrov, V., Single-Molecule imaging reveals that argonaute reshapes the binding properties of its nucleic acid guides (2015) Cell, 162, pp. 84-95
  • Sambandan, S., Akbalik, G., Kochen, L., Rinne, J., Kahlstatt, J., Glock, C., Activity-dependent spatially localized miRNA maturation in neuronal dendrites (2017) Science, 355, pp. 634-637
  • Schirle, N.T., Sheu-Gruttadauria, J., MacRae, I.J., Structural basis for microRNA targeting (2014) Science, 346, pp. 608-613
  • Scott, D.D., Norbury, C.J., RNA decay via 3' uridylation (2013) Biochim. Biophys. Acta, 1829, pp. 654-665
  • Seitz, H., Redefining microRNA targets (2009) Curr. Biol., 19, pp. 870-873
  • Seitz, H., Issues in current microRNA target identification methods (2017) RNA Biol., 14, pp. 831-834
  • Sethi, P., Lukiw, W.J., Micro-RNA abundance and stability in human brain: Specific alterations in Alzheimer's disease temporal lobe neocortex (2009) Neurosci. Lett., 459, pp. 100-104
  • Shen, B., Goodman, H.M., Uridine addition after microRNA-directed cleavage (2004) Science, 306, p. 997
  • Sheu-Gruttadauria, J., MacRae, I.J., Structural foundations of RNA silencing by argonaute (2017) J. Mol. Biol., 429, pp. 2619-2639
  • Smith, K.N., Starmer, J., Miller, S.C., Sethupathy, P., Magnuson, T., Long noncoding RNA moderates MicroRNA activity to maintain self-renewal in embryonic stem cells (2017) Stem Cell Rep., 9, pp. 108-121
  • Stalder, L., Heusermann, W., Sokol, L., Trojer, D., Wirz, J., Hean, J., The rough endoplasmatic reticulum is a central nucleation site of siRNA-mediated RNA silencing (2013) EMBO J., 32, pp. 1115-1127
  • Swarts, D.C., Makarova, K., Wang, Y., Nakanishi, K., Ketting, R.F., Koonin, E.V., The evolutionary journey of Argonaute proteins (2014) Nat. Struct. Mol. Biol., 21, pp. 743-753
  • Thornton, J.E., Du, P., Jing, L., Sjekloca, L., Lin, S., Grossi, E., Selective microRNA uridylation by Zcchc6 (TUT7) and Zcchc11 (TUT4) (2014) Nucleic Acids Res., 42, pp. 11777-11791
  • Tomari, Y., Matranga, C., Haley, B., Martinez, N., Zamore, P.D., A protein sensor for siRNA asymmetry (2004) Science, 306, pp. 1377-1380
  • Trippe, R., Sandrock, B., Benecke, B.J., A highly specific terminal uridylyl transferase modifies the 3'-end of U6 small nuclear RNA (1998) Nucleic Acids Res., 26, pp. 3119-3126
  • Tu, B., Liu, L., Xu, C., Zhai, J., Li, S., Lopez, M.A., Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis (2015) PLoS Genet., 11
  • Ule, J., Jensen, K., Mele, A., Darnell, R.B., CLIP: A method for identifying protein-RNA interaction sites in living cells (2005) Methods, 37, pp. 376-386
  • Ulitsky, I., Shkumatava, A., Jan, C.H., Sive, H., Bartel, D.P., Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution (2011) Cell, 147, pp. 1537-1550
  • Ustianenko, D., Hrossova, D., Potesil, D., Chalupnikova, K., Hrazdilova, K., Pachernik, J., Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs (2013) RNA, 19, pp. 1632-1638
  • Vagin, V.V., Sigova, A., Li, C., Seitz, H., Gvozdev, V., Zamore, P.D., A distinct small RNA pathway silences selfish genetic elements in the germline (2006) Science, 313, pp. 320-324
  • Van Rooij, E., Sutherland, L.B., Qi, X., Richardson, J.A., Hill, J., Olson, E.N., Control of stress-dependent cardiac growth and gene expression by a MicroRNA (2007) Science, 316, pp. 575-579
  • Wahle, E., Winkler, G.S., RNA decay machines: Deadenylation by the Ccr4-not and Pan2-Pan3 complexes (2013) Biochim. Biophys. Acta, 1829, pp. 561-570
  • Wang, X., Zhang, S., Dou, Y., Zhang, C., Chen, X., Yu, B., Synergistic and independent actions of multiple terminal nucleotidyl transferases in the 3' tailing of small RNAs in Arabidopsis (2015) PLoS Genet., 11
  • Wang, Y., Sheng, G., Juranek, S., Tuschl, T., Patel, D.J., Structure of the guide-strand-containing argonaute silencing complex (2008) Nature, 456, pp. 209-213
  • Wee, L.M., Flores-Jasso, C.F., Salomon, W.E., Zamore, P.D., Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties (2012) Cell, 151, pp. 1055-1067
  • Wyman, S.K., Knouf, E.C., Parkin, R.K., Fritz, B.R., Lin, D.W., Dennis, L.M., Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity (2011) Genome Res., 21, pp. 1450-1461
  • Xie, J., Ameres, S.L., Friedline, R., Hung, J.H., Zhang, Y., Xie, Q., Long-term, efficient inhibition of microRNA function in mice using rAAV vectors (2012) Nat. Methods, 9, pp. 403-409
  • Yamashita, A., Chang, T.C., Yamashita, Y., Zhu, W., Zhong, Z., Chen, C.Y., Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover (2005) Nat. Struct. Mol. Biol., 12, pp. 1054-1063
  • Yan, K.S., Yan, S., Farooq, A., Han, A., Zeng, L., Zhou, M.M., Structure and conserved RNA binding of the PAZ domain (2003) Nature, 426, pp. 468-474
  • Yang, J.H., Li, J.H., Shao, P., Zhou, H., Chen, Y.Q., Qu, L.H., StarBase: A database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data (2011) Nucleic Acids Res., 39, pp. D202-D209
  • Yang, Z., Ebright, Y.W., Yu, B., Chen, X., HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2' OH of the 3' terminal nucleotide (2006) Nucleic Acids Res., 34, pp. 667-675
  • Yi, R., Qin, Y., Macara, I.G., Cullen, B.R., Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs (2003) Genes Dev., 17, pp. 3011-3016
  • Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R.W., Methylation as a crucial step in plant microRNA biogenesis (2005) Science, 307, pp. 932-935
  • Yu, Y., Ji, L., Le, B.H., Zhai, J., Chen, J., Luscher, E., ARGONAUTE10 promotes the degradation of miR165/6 through the SDN1 and SDN2 exonucleases in Arabidopsis (2017) PLoS Biol., 15
  • Yu, Y., Jia, T., Chen, X., The 'how' and 'where' of plant microRNAs (2017) New Phytol., 216, pp. 1002-1017
  • Zhai, J., Zhao, Y., Simon, S.A., Huang, S., Petsch, K., Arikit, S., Plant microRNAs display differential 3' truncation and tailing modifications that are ARGONAUTE1 dependent and conserved across species (2013) Plant Cell, 25, pp. 2417-2428
  • Zhang, H., Kolb, F.A., Jaskiewicz, L., Westhof, E., Filipowicz, W., Single processing center models for human Dicer and bacterial RNase III (2004) Cell, 118, pp. 57-68
  • Zhao, Y., Yu, Y., Zhai, J., Ramachandran, V., Dinh, T.T., Meyers, B.C., The Arabidopsis nucleotidyl transferase HESO1 uridylates unmethylated small RNAs to trigger their degradation (2012) Curr. Biol., 22, pp. 689-694

Citas:

---------- APA ----------
Wightman, F.F., Giono, L.E., Fededa, J.P. & De La Mata, M. (2018) . Target RNAs strike back on MicroRNAs. Frontiers in Genetics, 9(OCT).
http://dx.doi.org/10.3389/fgene.2018.00435
---------- CHICAGO ----------
Wightman, F.F., Giono, L.E., Fededa, J.P., De La Mata, M. "Target RNAs strike back on MicroRNAs" . Frontiers in Genetics 9, no. OCT (2018).
http://dx.doi.org/10.3389/fgene.2018.00435
---------- MLA ----------
Wightman, F.F., Giono, L.E., Fededa, J.P., De La Mata, M. "Target RNAs strike back on MicroRNAs" . Frontiers in Genetics, vol. 9, no. OCT, 2018.
http://dx.doi.org/10.3389/fgene.2018.00435
---------- VANCOUVER ----------
Wightman, F.F., Giono, L.E., Fededa, J.P., De La Mata, M. Target RNAs strike back on MicroRNAs. Front. Genet. 2018;9(OCT).
http://dx.doi.org/10.3389/fgene.2018.00435