Artículo

Hassan, S.S.; Jamal, S.B.; Radusky, L.G.; Tiwari, S.; Ullah, A.; Ali, J.; Behramand; de Carvalho, P.V.S.D.; Shams, R.; Khan, S.; Figueiredo, H.C.P.; Barh, D.; Ghosh, P.; Silva, A.; Baumbach, J.; Röttger, R.; Turjanski, A.G.; Azevedo, V.A.C. "The druggable pocketome of Corynebacterium diphtheriae: A new approach for in silico putative druggable targets" (2018) Frontiers in Genetics. 9(FEB)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Diphtheria is an acute and highly infectious disease, previously regarded as endemic in nature but vaccine-preventable, is caused by Corynebacterium diphtheriae (Cd). In this work, we used an in silico approach along the 13 complete genome sequences of C. diphtheriae followed by a computational assessment of structural information of the binding sites to characterize the "pocketome druggability." To this end, we first computed the "modelome" (3D structures of a complete genome) of a randomly selected reference strain Cd NCTC13129; that had 13,763 open reading frames (ORFs) and resulted in 1,253 (~9%) structure models. The amino acid sequences of these modeled structures were compared with the remaining 12 genomes and consequently, 438 conserved protein sequences were obtained. The RCSB-PDB database was consulted to check the template structures for these conserved proteins and as a result, 401 adequate 3D models were obtained. We subsequently predicted the protein pockets for the obtained set of models and kept only the conserved pockets that had highly druggable (HD) values (137 across all strains). Later, an off-target host homology analyses was performed considering the human proteome using NCBI database. Furthermore, the gene essentiality analysis was carried out that gave a final set of 10-conserved targets possessing highly druggable protein pockets. To check the target identification robustness of the pipeline used in this work, we crosschecked the final target list with another in-house target identification approach for C. diphtheriae thereby obtaining three common targets, these were; hisE-phosphoribosyl-ATP pyrophosphatase, glpX-fructose 1,6-bisphosphatase II, and rpsH-30S ribosomal protein S8. Our predicted results suggest that the in silico approach used could potentially aid in experimental polypharmacological target determination in C. diphtheriae and other pathogens, thereby, might complement the existing and new drug-discovery pipelines. © 2018 Hassan, Jamal, Radusky, Tiwari, Ullah, Ali, Behramand, de Carvalho, Shams, Khan, Figueiredo, Barh, Ghosh, Silva, Baumbach, Röttger, Turjanski and Azevedo.

Registro:

Documento: Artículo
Título:The druggable pocketome of Corynebacterium diphtheriae: A new approach for in silico putative druggable targets
Autor:Hassan, S.S.; Jamal, S.B.; Radusky, L.G.; Tiwari, S.; Ullah, A.; Ali, J.; Behramand; de Carvalho, P.V.S.D.; Shams, R.; Khan, S.; Figueiredo, H.C.P.; Barh, D.; Ghosh, P.; Silva, A.; Baumbach, J.; Röttger, R.; Turjanski, A.G.; Azevedo, V.A.C.
Filiación:Department of Chemistry, Islamia College University Peshawar, Peshawar, Pakistan
PG Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
Department of Analytical Chemistry, Institute of Chemistry, São Paulo State University, São Paulo, Brazil
AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, Brazil
Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, India
Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
INQUIMAE/UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Corynebacterium diphtheria; Druggable genome; Global druggable (GD); Highly druggable (HD); Pocketome; Putative therapeutic targets; Structural proteomics; adenosine triphosphate phosphoribosyltransferase; apyrase; fructose 1,6 bisphosphate; fructose bisphosphatase; new drug; proteome; ribosome protein; amino acid sequence; Article; binding site; cellular distribution; computer model; conserved sequence; Corynebacterium diphtheriae; drug database; drug targeting; druggable pocketome; enzyme active site; gene fusion; gene sequence; infectious agent; nonhuman; open reading frame; Protein Data Bank; protein protein interaction; sequence homology; structural model; structural proteomics; structure analysis; three dimensional imaging
Año:2018
Volumen:9
Número:FEB
DOI: http://dx.doi.org/10.3389/fgene.2018.00044
Título revista:Frontiers in Genetics
Título revista abreviado:Front. Genet.
ISSN:16648021
CAS:adenosine triphosphate phosphoribosyltransferase, 9031-46-3, 9076-94-2; apyrase, 9000-95-7; fructose 1,6 bisphosphate, 488-69-7; fructose bisphosphatase, 9001-52-9
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16648021_v9_nFEB_p_Hassan

Referencias:

  • Adler, N.R., Mahony, A., Friedman, N.D., Diphtheria: forgotten, but not gone (2013) Intern. Med. J, 43, pp. 206-210
  • Alcaraz, N., Friedrich, T., Kotzing, T., Krohmer, A., Muller, J., Pauling, J., Efficient key pathway mining: combining networks and OMICS data (2012) Integr. Biol, 4, pp. 756-764
  • Asif, S.M., Asad, A., Faizan, A., Anjali, M.S., Arvind, A., Neelesh, K., Dataset of potential targets for Mycobacterium tuberculosis H37Rv through comparative genome analysis (2009) Bioinformation, 4, pp. 245-248
  • Barh, D., Gupta, K., Jain, N., Khatri, G., Leon-Sicairos, N., Canizalez-Roman, A., Conserved host-pathogen PPIs. Globally conserved inter-species bacterial PPIs based conserved host-pathogen interactome derived novel target in C. pseudotuberculosis, C. diphtheriae, M. tuberculosis, C. ulcerans, Y. pestis, and E. coli targeted by Piper betel compounds (2013) Integr. Biol, 5, pp. 495-509
  • Barh, D., Jain, N., Tiwari, S., Parida, B.P., D'Afonseca, V., Li, L., A novel comparative genomics analysis for common drug and vaccine targets in Corynebacterium pseudotuberculosis and other CMN group of human pathogens (2011) Chem. Biol. Drug Des, 78, pp. 73-84
  • Barh, D., Kumar, A., In silico identification of candidate drug and vaccine targets from various pathways in Neisseria gonorrhoeae (2009) In Silico Biol, 9, pp. 225-231
  • Barraud, O., Badell, E., Denis, F., Guiso, N., Ploy, M.C., Antimicrobial drug resistance in Corynebacterium diphtheriae mitis (2011) Emerg. Infect. Dis, 17, pp. 2078-2080
  • Baumbach, J., On the power and limits of evolutionary conservation-unraveling bacterial gene regulatory networks (2010) Nucleic Acids Res, 38, pp. 7877-7884
  • Baumbach, J., Apeltsin, L., Linking cytoscape and the corynebacterial reference database CoryneRegNet (2008) BMC Genomics, 9, p. 184
  • Benkert, P., Kunzli, M., Schwede, T., QMEAN server for protein model quality estimation (2009) Nucleic Acids Res, 37, pp. W510-W514
  • Berman, H., Henrick, K., Nakamura, H., Announcing the worldwide protein data bank (2003) Nat. Struct. Biol, 10, p. 980
  • Brooks, G.F., Carroll, K.C., Butel, J.S., Morse, S.A., Mietzneron, T.A., "Aerobic non-spore-forming gram-positive bacilli: Corynebacterium, Listeria, Erysipelothrix, Actinomycetes, and related pathogens," (2010) In Jawetz, Melnick, & Adelberg's Medical Microbiology, , 25 Edn, (New York, NY: McGraw-Hill)
  • Cerdeno-Tarraga, A.M., Efstratiou, A., Dover, L.G., Holden, M.T., Pallen, M., Bentley, S.D., The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129 (2003) Nucleic Acids Res, 31, pp. 6516-6523
  • Chong, C.E., Lim, B.S., Nathan, S., Mohamed, R., In silico analysis of Burkholderia pseudomallei genome sequence for potential drug targets (2006) In Silico Biol, 6, pp. 341-346
  • Davies, C., Ramakrishnan, V., White, S.W., Structural evidence for specific S8-RNA and S8-protein interactions within the 30S ribosomal subunit: ribosomal protein S8 from Bacillus stearothermophilus at 1.9 A resolution (1996) Structure, 4, pp. 1093-1104
  • Dutta, A., Singh, S.K., Ghosh, P., Mukherjee, R., Mitter, S., Bandyopadhyay, D., In silico identification of potential therapeutic targets in the human pathogen Helicobacter pylori (2006) In Silico Biol, 6, pp. 43-47
  • Finn, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell, A.L., The Pfam protein families database: towards a more sustainable future (2016) Nucleic Acids Res, 44, pp. D279-D285
  • Furnham, N., Holliday, G.L., de Beer, T.A., Jacobsen, J.O., Pearson, W.R., Thornton, J.M., The catalytic site atlas 2.0: cataloging catalytic sites and residues identified in enzymes (2014) Nucleic Acids Res, 42, pp. D485-D489
  • Gerald, L., Mandell, J.E.B., Raphael, D., (2009) Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, , Philadelphia, PA: ELSEVIER
  • Hadfield, T.L., McEvoy, P., Polotsky, Y., Tzinserling, V.A., Yakovlev, A.A., The pathology of diphtheria (2000) J. Infect. Dis, 181, pp. S116-S120
  • Hart, P.E., Lee, P.Y., Macallan, D.C., Wansbrough-Jones, M.H., Cutaneous and pharyngeal diphtheria imported from the Indian subcontinent (1996) Postgrad. Med. J, 72, pp. 619-620
  • Hassan, S.S., Tiwari, S., Guimaraes, L.C., Jamal, S.B., Folador, E., Sharma, N.B., Proteome scale comparative modeling for conserved drug and vaccine targets identification in Corynebacterium pseudotuberculosis (2014) BMC Genomics, 15, p. S3
  • Hodes, H.L., Diphtheria (1979) Pediatr. Clin. North Am, 26, pp. 445-459
  • Horecker, B.L., Melloni, E., Pontremoli, S., Fructose 1,6-bisphosphatase: properties of the neutral enzyme and its modification by proteolytic enzymes (1975) Adv. Enzymol. Relat. Areas Mol. Biol, 42, pp. 193-226
  • Jamal, S.B., Hassan, S.S., Tiwari, S., Viana, M.V., Benevides, L.J., Ullah, A., An integrative in-silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriae (2017) PLOS ONE, 12
  • Jamal, S.B., Tiwari, S., Silva, A., Azevedo, V., Pathogenesis of Corynebacterium diphtheriae and available vaccines; an overview (2017) Glob. J. Infect. Dis. Clin. Res, 3, pp. 20-24
  • Javid-Majd, F., Yang, D., Ioerger, T.R., Sacchettini, J.C., The 1.25 A resolution structure of phosphoribosyl-ATP pyrophosphohydrolase from Mycobacterium tuberculosis (2008) Acta Crystallogr. D Biol. Crystallogr, 64, pp. 627-635
  • Kanehisa, M., Goto, S., KEGG: kyoto encyclopedia of genes and genomes (2000) Nucleic Acids Res, 28, pp. 27-30
  • Kinnings, S.L., Xie, L., Fung, K.H., Jackson, R.M., Xie, L., Bourne, P.E., The Mycobacterium tuberculosis drugome and its polypharmacological implications (2010) PLOS Comput. Biol, 6
  • Magrane, M., UniProt, C., UniProt Knowledgebase: a hub of integrated protein data (2011) Database, 2011
  • Melo, F., Feytmans, E., Assessing protein structures with a non-local atomic interaction energy (1998) J. Mol. Biol, 277, pp. 1141-1152
  • Melo, F., Sali, A., Fold assessment for comparative protein structure modeling (2007) Protein Sci, 16, pp. 2412-2426
  • Melo, F., Sanchez, R., Sali, A., Statistical potentials for fold assessment (2002) Protein Sci, 11, pp. 430-448
  • Perumal, D., Lim, C.S., Sakharkar, K.R., Sakharkar, M.K., Differential genome analyses of metabolic enzymes in Pseudomonas aeruginosa for drug target identification (2007) In Silico Biol, 7, pp. 453-465
  • Pizza, M., Scarlato, V., Masignani, V., Giuliani, M.M., Arico, B., Comanducci, M., Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing (2000) Science, 287, pp. 1816-1820
  • Radusky, L., Defelipe, L.A., Lanzarotti, E., Luque, J., Barril, X., Marti, M.A., TuberQ: a Mycobacterium tuberculosis protein druggability database (2014) Database, 2014
  • Radusky, L.G., Hassan, S., Lanzarotti, E., Tiwari, S., Jamal, S., Ali, J., An integrated structural proteomics approach along the druggable genome of Corynebacterium pseudotuberculosis species for putative druggable targets (2015) BMC Genomics, 16
  • Rathi, B., Sarangi, A.N., Trivedi, N., Genome subtraction for novel target definition in Salmonella typhi (2009) Bioinformation, 4, pp. 143-150
  • Rottger, R., Kalaghatgi, P., Sun, P., Soares Sde, C., Azevedo, V., Wittkop, T., Density parameter estimation for finding clusters of homologous proteins-tracing actinobacterial pathogenicity lifestyles (2013) Bioinformatics, 29, pp. 215-222
  • Sakharkar, K.R., Sakharkar, M.K., Chow, V.T., A novel genomics approach for the identification of drug targets in pathogens, with special reference to Pseudomonas aeruginosa (2004) In Silico Biol, 4, pp. 355-360
  • Sali, A., Blundell, T.L., Comparative protein modelling by satisfaction of spatial restraints (1993) J. Mol. Biol, 234, pp. 779-815
  • Sassetti, C.M., Rubin, E.J., Genetic requirements for mycobacterial survival during infection (2003) Proc. Natl. Acad. Sci. U.S.A, 100, pp. 12989-12994
  • Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., STRING v10: protein-protein interaction networks, integrated over the tree of life (2015) Nucleic Acids Res, 43, pp. D447-D452
  • Trost, E., Blom, J., Soares Sde, C., Huang, I.H., Al-Dilaimi, A., Schroder, J., Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia (2012) J. Bacteriol, 194, pp. 3199-3215
  • Velec, H.F., Gohlke, H., Klebe, G., DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction (2005) J. Med. Chem, 48, pp. 6296-6303
  • Webb, B., Sali, A., Comparative protein structure modeling using MODELLER (2016) Curr. Protoc. Protein Sci, 86, pp. 2.9.1-2.9.37
  • Wright, S.W., Carlo, A.A., Carty, M.D., Danley, D.E., Hageman, D.L., Karam, G.A., Anilinoquinazoline inhibitors of fructose 1,6-bisphosphatase bind at a novel allosteric site: synthesis, in vitro characterization, and X-ray crystallography (2002) J. Med. Chem, 45, pp. 3865-3877
  • Yates, J.L., Arfsten, A.E., Nomura, M., In vitro expression of Escherichia coli ribosomal protein genes: autogenous inhibition of translation (1980) Proc. Natl. Acad. Sci. U.S.A, 77, pp. 1837-1841
  • Yoon, S.H., Park, Y.K., Lee, S., Choi, D., Oh, T.K., Hur, C.G., Towards pathogenomics: a web-based resource for pathogenicity islands (2007) Nucleic Acids Res, 35, pp. D395-D400
  • Yu, C.S., Lin, C.J., Hwang, J.K., Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions (2004) Protein Sci, 13, pp. 1402-1406
  • Zhang, R., Ou, H.Y., Zhang, C.T., DEG: a database of essential genes (2004) Nucleic Acids Res, 32, pp. D271-D272

Citas:

---------- APA ----------
Hassan, S.S., Jamal, S.B., Radusky, L.G., Tiwari, S., Ullah, A., Ali, J., Behramand,..., Azevedo, V.A.C. (2018) . The druggable pocketome of Corynebacterium diphtheriae: A new approach for in silico putative druggable targets. Frontiers in Genetics, 9(FEB).
http://dx.doi.org/10.3389/fgene.2018.00044
---------- CHICAGO ----------
Hassan, S.S., Jamal, S.B., Radusky, L.G., Tiwari, S., Ullah, A., Ali, J., et al. "The druggable pocketome of Corynebacterium diphtheriae: A new approach for in silico putative druggable targets" . Frontiers in Genetics 9, no. FEB (2018).
http://dx.doi.org/10.3389/fgene.2018.00044
---------- MLA ----------
Hassan, S.S., Jamal, S.B., Radusky, L.G., Tiwari, S., Ullah, A., Ali, J., et al. "The druggable pocketome of Corynebacterium diphtheriae: A new approach for in silico putative druggable targets" . Frontiers in Genetics, vol. 9, no. FEB, 2018.
http://dx.doi.org/10.3389/fgene.2018.00044
---------- VANCOUVER ----------
Hassan, S.S., Jamal, S.B., Radusky, L.G., Tiwari, S., Ullah, A., Ali, J., et al. The druggable pocketome of Corynebacterium diphtheriae: A new approach for in silico putative druggable targets. Front. Genet. 2018;9(FEB).
http://dx.doi.org/10.3389/fgene.2018.00044