Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Plant cell walls are composite structures mainly composed of polysaccharides, also containing a large set of proteins involved in diverse functions such as growth, environmental sensing, signaling, and defense. Research on cell wall proteins (CWPs) is a challenging field since present knowledge of their role into the structure and function of cell walls is very incomplete. Among CWPs, hydroxyproline (Hyp)-rich O-glycoproteins (HRGPs) were classified into three categories: (i) moderately glycosylated extensins (EXTs) able to form covalent scaffolds; (ii) hyperglycosylated arabinogalactan proteins (AGPs); and (iii) Hyp/proline (Pro)-Rich proteins (H/PRPs) that may be non-, weaklyor highly-glycosylated. In this review, we provide a description of the main features of their post-translational modifications (PTMs), biosynthesis, structure, and function. We propose a new model integrating HRGPs and their partners in cell walls. Altogether, they could form a continuous glyco-network with non-cellulosic polysaccharides via covalent bonds or non-covalent interactions, thus strongly contributing to cell wall architecture. © 2014 Hijazi, Velasquez, Jamet, Estevez and Albenne.

Registro:

Documento: Artículo
Título:An update on post-translational modifications of hydroxyproline-rich glycoproteins: Toward a model highlighting their contribution to plant cell wall architecture
Autor:Hijazi, M.; Velasquez, S.M.; Jamet, E.; Estevez, J.M.; Albenne, C.
Filiación:Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546, Castanet-Tolosan, France
CNRS, UMR 5546, Castanet-Tolosan, France
Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Arabinogalactan protein; Extensin; Hydroxyproline; O-glycosylation; Proline-rich protein
Año:2014
Volumen:5
Número:AUG
DOI: http://dx.doi.org/10.3389/fpls.2014.00395
Título revista:Frontiers in Plant Science
Título revista abreviado:Front. Plant Sci.
ISSN:1664462X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1664462X_v5_nAUG_p_Hijazi

Referencias:

  • Albenne, C., Canut, H., Jamet, E., Plant cell wall proteomics: The leadership of Arabidopsis thaliana (2013) Front. Plant Sci, 4, p. 111. , doi: 10.3389/fpls.2013.00111
  • Asif, M.H., Trivedi, P.K., Misra, P., Nath, P., Prolyl-4-hydroxylase (AtP4H1) mediates and mimics low oxygen response in Arabidopsis thaliana (2009) Funct. Integr. Genomics, 9, pp. 525-535. , doi: 10.1007/s10142-009-0118-y
  • Baldwin, T.C., Domingo, C., Schindler, T., Seetharaman, G., Stacey, N., Roberts, K., DcAGP1, a secreted arabinogalactan protein, is related to a family of basic proline-rich proteins (2001) Plant Mol. Biol, 45, pp. 421-435. , doi: 10.1023/A:1010637426934
  • Baldwin, T.C., Hengel, A., Roberts, K., The C-terminal PAC domain of a secreted arabinogalactan protein from carrot defines a family of basic prolinerich proteins (2000) In Cell and Developmental Biology of Arabinogalactan Proteins, pp. 43-50. , eds E. A. Nothnagel, A. Bacic, and A. E. Clarke (New York, NY: Kluwer Academic Publishers), doi: 10.1007/978-1-4615-4207-0_4
  • Basu, D., Liang, Y., Liu, X., Himmeldirk, K., Faik, A., Kieliszewski, M., Functional identification of a hydroxyproline-O-galactosyltransferase specific for arabinogalactan protein biosynthesis in Arabidopsis (2013) J. Biol. Chem, 288, pp. 10132-10143. , doi: 10.1074/jbc.M112.432609
  • Battaglia, M., Solorzano, R.M., Hernandez, M., Cuellar-Ortiz, S., Garcia-Gomez, B., Marquez, J., Proline-rich cell wall proteins accumulate in growing regions and phloem tissue in response to water deficit in common bean seedlings (2007) Planta, 225, pp. 1121-1133. , doi: 10.1007/s00425-006-0423-9
  • Baumberger, N., Ringli, C., Keller, B., The chimeric leucine-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana (2001) Genes Dev, 15, pp. 1128-1139. , doi: 10.1101/gad. 200201
  • Baumberger, N., Steiner, M., Ryser, U., Keller, B., Ringli, C., Synergistic interaction of the two paralogous Arabidopsis genes LRX1 and LRX2 in cell wall formation during root hair development (2003) Plant J, 35, pp. 71-81. , doi: 10.1046/j.1365-313X.2003.01784.x
  • Bernhardt, C., Tierney, M.L., Expression of AtPRP3, a proline-rich structural cell wall protein from arabidopsis, is regulated by cell-type-specific developmental pathways involved in root hair formation (2000) Plant Physiol, 122, pp. 705-714. , doi: 10.1104/pp.122.3.705
  • Bradley, D.J., Kjellbom, P., Lamb, C.J., Elicitor-induced and wound induced oxidative cross-linking of a proline rich plant cell wall protein: A novel, rapid defense response (1992) Cell, 70, pp. 21-30. , doi: 10.1016/0092-8674(92)90530-P
  • Brady, J.D., Sadler, I.H., Fry, S.C., Di-isodityrosine, a novel tetrametric derivative of tyrosine in plant cell wall proteins: A new potential cross-link (1996) Biochem. J, 315, pp. 323-327
  • Brisson, L.F., Tenhaken, R., Lamb, C., Function of oxidative cross linking of cell wall structural proteins in plant disease resistance (1994) Plant Cell, 6, pp. 1703-1712. , doi: 10.1105/tpc.6.12.1703
  • Brown, D., Wightman, R., Zhang, Z., Gomez, L., Atanassov, I., Bukowski, J.P., Arabidopsis genes IRREGULAR XYLEM (IRX15) and IRX15L encode DUF579-containing proteins that are essential for normal xylan deposition in the secondary cell wall (2011) Plant J, 66, pp. 401-403. , doi: 10.1111/j.1365313X.2011.04501.x
  • Bucher, M., Brunner, S., Zimmermann, P., Zardi, G.I., Amrhein, N., Willmitzer, L., The expression of an extensin-like protein correlates with cellular tip growth in tomato (2002) Plant Physiol, 128, pp. 911-923. , doi: 10.1104/pp.010998
  • Cannon, M.C., Terneus, K., Hall, Q., Tan, L., Wang, Y., Wegenhart, B.L., Self-assembly of the plant cell wall requires an extensin scaffold (2008) Proc. Natl. Acad. Sci. U.S.A, 105, pp. 2226-2231. , doi: 10.1073/pnas.0711980105
  • Carpita, N.C., Gibeaut, D.M., Structural models of primary cell walls in flowering plants, consistency of molecular structure with the physical properties of the walls during growth (1993) Plant J, 3, pp. 1-30. , doi: 10.1111/j.1365313X.1993.tb00007.x
  • Cavalier, D.M., Lerouxel, O., Neumetzler, L., Yamauchi, K., Reinecke, A., Freshour, G., Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component (2008) Plant Cell, 20, pp. 1519-1537. , doi: 10.1105/tpc.108.059873
  • Cosgrove, D.J., Growth of the plant cell wall (2005) Nat. Rev. Mol. Cell Biol, 6, pp. 850-861. , doi: 10.1038/nrm1746
  • Dick-Perez, M., Zhang, Y., Hayes, J., Salazar, A., Zabotina, O.A., Hong, M., Structure and interactions of plant cell-wall polysaccharides by twoand three-dimensional magic-angle-spinning solid-state NMR (2011) Biochemistry, 50, pp. 989-1000. , doi: 10.1021/bi101795q
  • Diet, A., Link, B., Seifert, G.J., Schellenberg, B., Wagner, U., Pauly, M., The Arabidopsis root hair cell wall formation mutant lrx1 is suppressed by mutations in the RHM1 gene encoding a UDP-L-rhamnose synthase (2006) Plant Cell, 18, pp. 1630-1641. , doi: 10.1105/tpc.105.038653
  • Edens, W.A., Sharling, L., Cheng, G., Shapira, R., Kinkade, J.M., Lee, T., Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox (2001) J. Cell Biol, 154, pp. 879-891. , doi: 10.1083/jcb.200103132
  • Egelund, J., Obel, N., Ulvskov, P., Geshi, N., Pauly, M., Bacic, A., Molecular characterization of two Arabidopsis thaliana glycosyltransferase mutants, rra1 and rra2, which have a reduced residual arabinose content in a polymer tightly associated with the cellulosic wall residue (2007) Plant Mol. Biol, 64, pp. 439-451. , doi: 10.1007/s11103-007-9162-y
  • Ellis, M., Egelund, J., Schultz, C.J., Bacic, A., Arabinogalactanproteins: Key regulators at the cell surface? (2010) Plant Physiol, 153, pp. 403-419. , doi: 10.1104/pp.110.156000
  • Ertl, H., Hallmann, A., Wenzl, S., Sumper, M., A novel extensin that may organize extracellular matrix biogenesis in Volvox carteri (1992) EMBO J, 11, pp. 2055-2062
  • Estevez, J.M., Kieliszewski, M.J., Khitrov, N., Somerville, C., Characterization of synthetic hydroxyproline-rich proteoglycans with arabinogalactan protein and extensin motifs in Arabidopsis (2006) Plant Physiol, 142, pp. 458-470. , doi: 10.1104/pp.106.084244
  • Ferris, P.J., Woessner, J.P., Waffenschmidt, S., Kilz, S., Drees, J., Goodenough, U.W., Glycosylated polyproline II rods with kinks as a structural motif in plant hydroxyproline-rich glycoproteins (2001) Biochemistry, 40, pp. 2978-2987. , doi: 10.1021/bi0023605
  • Frueauf, J.B., Dolata, M., Leykam, J.F., Lloyd, E., Gonzales, M., Vandenbosch, K., Peptides isolated from cell walls of Medicago truncatula nodules and uninfected root (2000) Phytochemistry, 55, pp. 429-438. , doi: 10.1016/S00319422(00)00336-8
  • Fry, S.C., Primary cell wall metabolism: Tracking the careers of wall polymers in living plant cells (2004) New Phytol, 161, pp. 641-675. , doi: 10.1111/j.1469-8137.2004.00980.x
  • Gille, S., Hansel, U., Ziemann, M., Pauly, M., Identification of plant cell wall mutants by means of a forward chemical genetic approach using hydrolases (2009) Proc. Natl. Acad. Sci. U.S.A, 106, pp. 14699-14704. , doi: 10.1073/pnas. 0905434106
  • Griffiths, J.S., Tsai, A.Y., Xue, H., Voiniciuc, C., Sola, K., Seifert, G., SALT-OVERLY SENSITIVE5 mediates Arabidopsis seed coat mucilage adherence and organization through pectins (2014) Plant Physiol, 165, pp. 991-1004. , doi: 10.1104/pp.114.239400
  • Guzzardi, P., Genot, G., Jamet, E., The Nicotiana sylvestris extensin gene, Ext 1.2A, is expressed in the root transition zone and upon wounding (2004) Biochim. Biophys. Acta, 1680, pp. 83-92. , doi: 10.1016/j.bbaexp.2004.08.012
  • Hall, Q., Cannon, M.C., The cell wall hydroxyproline-rich glycoprotein RSH is essential for normal embryo development in Arabidopsis (2002) Plant Cell, 14, pp. 1161-1172. , doi: 10.1105/tpc.010477
  • Hieta, R., Myllyharju, J., Cloning and characterization of a low molecular weight prolyl 4-hydroxylase from Arabidopsis thaliana. Effective hydroxylation of proline-rich, collagen-like, and hypoxia-inducible transcription factor alpha-like peptides (2002) J. Biol. Chem, 277, pp. 23965-23971. , doi: 10.1074/jbc.M201865200
  • Hijazi, M., Durand, J., Pichereaux, C., Pont, F., Jamet, E., Albenne, C., Characterization of the arabinogalactan protein 31 (AGP31) of Arabidopsis thaliana: New advances on the Hyp-O-glycosylation of the Pro-rich domain (2012) J. Biol. Chem, 287, pp. 9623-9632. , doi: 10.1074/jbc.M111.247874
  • Hijazi, M., Roujol, D., Nguyen-Kim, H., Del Rocio, C.C.L., Saland, E., Jamet, E., Arabinogalactan protein 31 (AGP31), a putative network-forming protein in Arabidopsis thaliana cell walls? (2014) Ann Bot, , doi: 10.1093/aob/mcu038. [Epub ahead of print]
  • Hirsinger, C., Salva, I., Marbach, J., Durr, A., Fleck, J., Jamet, E., The tobacco extensin gene Ext 1.4 is expressed in cells submitted to mechanical constraints and in cells proliferating under hormone control (1999) J. Exp. Bot, 50, pp. 343-355
  • Immerzeel, P., Eppinka, M.M., de Vriesb, S.C., Scholsa, H.A., Voragen, A.G.J., Carrot arabinogalactan proteins are interlinked with pectins (2006) Physiol. Plant, 128, pp. 18-28. , doi: 10.1111/j.1399-3054.2006.00712.x
  • Jackson, P.A., Galinha, C.I., Pereira, C.S., Fortunato, A., Soares, N.C., Amancio, S.B., Rapid deposition of extensin during the elicitation of grapevine callus cultures is specifically catalyzed by a 40-kilodalton peroxidase (2001) Plant Physiol, 127, pp. 1065-1076. , doi: 10.1104/pp.010192
  • Jauh, G.Y., Lord, E.M., Localization of pectins and arabinogalactanproteins in lily (Lilium longittorum L.) pollen tube and style, and their possible roles in pollination (1996) Planta, 199, pp. 251-261. , doi: 10.1007/BF00196566
  • Keegstra, K., Talmadge, K.W., Bauer, W.D., Albersheim, P., The structure of plant cell walls: III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components (1973) Plant Physiol, 51, pp. 188-197. , doi: 10.1104/pp.51.1.188
  • Keskiaho, K., Hieta, R., Sormunen, R., Myllyharju, J., Chlamydomonas reinhardtii has multiple prolyl 4-hydroxylases, one of which is essential for proper cell wall assembly (2007) Plant Cell, 19, pp. 256-269. , doi: 10.1105/tpc.106. 042739
  • Kieliszewski, M.J., The latest hype on Hyp-O-glycosylation codes (2001) Phytochemistry, 57, pp. 319-323. , doi: 10.1016/S0031-9422(01)00029-2
  • Kieliszewski, M.J., Lamport, D.T., Tan, L., Cannon, M.C., Hydroxyproline-rich glycoproteins: Form and function (2011) In Plant Polysaccharides: Biosynthesis and Bioengineering, pp. 321-342. , ed. P. Ulvskov. (Oxford: Wiley-Blackwell)
  • Kieliszewski, M.J., Leykam, J.F., Lamport, D.T., Trypsin cleaves lysylproline in a hydroxyproline-rich glycoprotein from Zea mays (1989) Pept. Res, 2, pp. 246-248
  • Kitazawa, K., Tryfona, T., Yoshimi, Y., Hayashi, Y., Kawauchi, S., Antonov, L., β-galactosyl Yariv reagent binds to the β-1,3-galactan of arabinogalactan proteins (2013) Plant Physiol, 161, pp. 1117-1126. , doi: 10.1104/pp.112.211722
  • Knoch, E., Dilokpimol, A., Geshi, N., Arabinogalactan proteins: Focus on carbohydrate active enzymes (2014) Front. Plant Sci, 5, p. 198. , doi: 10.3389/fpls.2014.00198
  • Koski, M.K., Hieta, R., Bollner, C., Kivirikko, K.I., Myllyharju, J., Wierenga, R.K., The active site of an algal prolyl 4-hydroxylase has a large structural plasticity (2007) J. Biol. Chem, 282, pp. 37112-37123. , doi: 10.1074/jbc.M706554200
  • Koski, M.K., Hieta, R., Hirsila, M., Ronka, A., Myllyharju, J., Wierenga, R.K., The crystal structure of an algal prolyl 4-hydroxylase complexed with a proline-rich peptide reveals a novel buried tripeptide binding motif (2009) J. Biol. Chem, 284, pp. 25290-25301. , doi: 10.1074/jbc.M109.014050
  • Kwan, J.S., Morvan, H., Characterization of extracellular beta(1,4)-xylan backbone O-substituted by arabinogalactans type-II in a plant-cell suspension (1995) Carbohydr. Polym, 26, pp. 99-107. , doi: 10.1016/0144-8617(94)00098-E
  • Lamport, D.T., Galactosylserine in extensin (1973) Biochem. J, 133, pp. 125-131
  • Lamport, D.T., Life behind cell walls: Paradigm lost, paradigm regained (2001) Cell. Mol. Life Sci, 58, pp. 1363-1385. , doi: 10.1007/PL00000782
  • Lamport, D.T., Kieliszewski, M.J., Chen, Y., Cannon, M.C., Role of the extensin superfamily in primary cell wall architecture (2011) Plant Physiol, 156, pp. 11-19. , doi: 10.1104/pp.110.169011
  • Lamport, D.T., Kieliszewski, M.J., Showalter, A.M., Salt stress upregulates periplasmic arabinogalactan proteins: Using salt stress to analyse AGP function (2006) New Phytol, 169, pp. 479-492. , doi: 10.1111/j.1469-8137.2005.01591.x
  • Lamport, D.T., Northcote, D.H., Hydroxyproline in primary cell walls of higher plants (1960) Nature, 188, pp. 665-666. , doi: 10.1038/188665b0
  • Lamport, D.T., Várnai, P., Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development (2013) New Phytol, 197, pp. 58-64. , doi: 10.1111/nph.12005
  • Léonard, R., Petersen, B.O., Himly, M., Kaar, W., Wopfner, N., Kolarich, D., Two novel types of O-glycans on the mugwort pollen allergen Art v 1 and their role in antibody binding (2005) J. Biol. Chem, 280, pp. 7932-7940. , doi: 10.1074/jbc.M410407200
  • Léonard, R., Wopfner, N., Pabst, M., Stadlmann, J., Petersen, B.O., Duus, J.O., A new allergen from ragweed (Ambrosia artemisiifolia) with homology to Art v 1 from mugwort (2010) J. Biol. Chem, 285, pp. 27192-27200. , doi: 10.1074/jbc.M110.127118
  • Li, Y.Q., Faleri, C., Geitmann, A., Zhang, H.Q., Cresti, M., Immunogold localization of arabinogalactan proteins, unesterified and esterified pectins in pollen grains and pollen tubes of Nicotiana tabacum L (1995) Protoplasma, 189, pp. 26-36. , doi: 10.1007/BF01280289
  • Liu, C., Mehdy, M.C., A nonclassical arabinogalactan protein gene highly expressed in vascular tissues, AGP31, is transcriptionally repressed by methyl jasmonic acid in Arabidopsis (2007) Plant Physiol, 145, pp. 863-874. , doi: 10.1104/pp.107.102657
  • McKenna, C., Al-Assaf, S., Phillips, G.O., Funami, T., The protein component in pectin is it a AGP? (2006) Foods Food Ingred. J. Jpn, 211, pp. 264-271
  • Merkouropoulos, G., Shirsat, A.H., The unusual Arabidopsis extension gene atExt1 is expressed throughout plant development and is induced by a variety of biotic and abiotic stresses (2003) Planta, 217, pp. 356-366. , doi: 10.1007/s00425003-1002-y
  • Micheli, F., Pectin methylesterases: Cell wall enzymes with important roles in plant physiology (2001) Trends Plant Sci, 6, pp. 414-419. , doi: 10.1016/S1360-1385(01)02045-3
  • Mohnen, D., Pectin structure and biosynthesis (2008) Curr. Opin. Plant Biol, 11, pp. 266-277. , doi: 10.1016/j.pbi.2008.03.006
  • Mollet, J.C., Kim, S., Jauh, G.Y., Lord, E.M., Arabinogalactan proteins, pollen tube growth, and the reversible effects of Yariv phenylglycoside (2002) Protoplasma, 219, pp. 89-98. , doi: 10.1007/s007090200009
  • Nguema-Ona, E., Vicré-Gibouin, M., Cannesan, M.A., Driouich, A., Arabinogalactan proteins in root-microbe interactions (2013) Trends Plant Sci, 18, pp. 440-449. , doi: 10.1016/j.tplants.2013.03.006
  • Nuñez, A., Fishman, M.L., Fortis, L.L., Cooke, P.H., Hotchkiss, A.T.J., Identification of extensin protein associated with sugar beet pectin (2009) J. Agric. Food Chem, 57, pp. 10951-10958. , doi: 10.1021/jf902162t
  • Ogawa-Ohnishi, M., Matsushita, W., Matsubayashi, Y., Identification of three hydroxyproline O-arabinosyltransferases in Arabidopsis thaliana (2013) Nat. Chem. Biol, 9, pp. 726-730. , doi: 10.1038/nchembio.1351
  • Park, S., Szumlanski, A.L., Gu, F., Guo, F., Nielsen, E., A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells (2011) Nat. Cell Biol, 13, pp. 973-980. , doi: 10.1038/ncb2294
  • Park, Y.B., Cosgrove, D.J., A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases (2012) Plant Physiol, 158, pp. 1933-1943. , doi: 10.1104/pp.111.192880
  • Parsons, J., Altmann, F., Graf, M., Stadlmann, J., Reski, R., Decker, E.L., A gene responsible for prolyl-hydroxylation of moss-produced recombinant human erythropoietin (2013) Sci. Rep, 3, p. 319. , doi: 10.1038/srep03019
  • Pellerin, P., Pellerin, P., Vidal, S., Williams, P., Brillouet, J.M., Characterization of five type II arabinogalactan-protein fractions from red wine of increasing uronic acid content (1995) Carbohydr. Res, 277, pp. 135-143. , doi: 10.1016/0008-6215(95)00206-9
  • Pena, M.J., Kong, Y., York, W.S., O'Neill, M.A., A galacturonic acidcontaining xyloglucan is involved in Arabidopsis root hair tip growth (2012) Plant Cell, 24, pp. 4511-4524. , doi: 10.1105/tpc.112.103390
  • Price, N.J., Pinheiro, C., Soares, C.M., Ashford, D.A., Ricardo, C.P., Jackson, P.A., A biochemical and molecular characterization of LEP1, an extensin peroxidase from lupin (2003) J. Biol. Chem, 278, pp. 41389-41399. , doi: 10.1074/jbc.M304519200
  • Qi, X.Y., Behrens, B.X., West, P.R., Mort, A.J., Solubilization and partial characterization of extensin fragments from cell walls of cotton suspension-cultures, evidence for a covalent cross-link between extensin and pectin (1995) Plant Physiol, 108, pp. 1691-1701. , doi: 10.1104/pp.108.4.1691
  • Rees, D.A., Wight, N.J., Molecular cohesion in plant cell walls. Methylation analysis of pectic polysaccharides from the cotyledons of white mustard (1969) Biochem. J, 115, pp. 431-439
  • Ringli, C., The hydroxyproline-rich glycoprotein domain of the Arabidopsis LRX1 requires Tyr for function but not for insolubilization in the cell wall (2010) Plant J, 63, pp. 662-669. , doi: 10.1111/j.1365-313X.2010.04270.x
  • Rose, J.K.C., Lee S., -J., Straying off the highway: Trafficking of secreted plant proteins and complexity in the plant cell wall proteome (2010) Plant Physiol Biochem, 153, pp. 433-436. , doi: 10.1104/pp.110.154872
  • Rubinstein, A.L., Marquez, J., Suarez-Cervera, M., Bedinger, P.A., Extensin-like glycoproteins in the maize pollen tube wall (1995) Plant Cell, 7, pp. 2211-2225. , doi: 10.1105/tpc.7.12.2211
  • Saito, F., Suyama, A., Oka, T., Yoko, O.T., Matsuoka, K., Jigami, Y., Identification of novel peptidyl serine O-galactosyltransferase gene family in plants (2014) J. Biol. Chem, 289, pp. 20405-20420. , doi: 10.1074/jbc.M114.553933
  • Salvà, I., Jamet, E., Expression of the tobacco Ext1.4 extensin gene upon mechanical constraints and localization of regulatory regions (2001) Plant Biol, 3, pp. 1-10. , doi: 10.1055/s-2001-11746
  • Scheller, H.V., Ulvskov, P., Hemicelluloses (2010) Annu. Rev. Plant Biol, 61, pp. 263-289. , doi: 10.1146/annurev-arplant-042809-112315
  • Schnabelrauch, L.S., Kieliszewski, M.J., Upham, B.L., Alizedeh, H., Lamport, D.T., Isolation of pI 4.6 extensin peroxidase from tomato cell suspension cultures and identification of Val-Tyr-Lys as putative intermolecular cross-link site (1996) Plant J, 9, pp. 477-489. , doi: 10.1046/j.1365-313X.1996.09040477.x
  • Seifert, G.J., Roberts, K., The biology of arabinogalactan proteins (2007) Annu. Rev. Plant Biol, 58, pp. 137-161. , doi: 10.1146/annurev.arplant.58.032806.103801
  • Shirsat, A.H., Wieczorek, D., Kozbial, P., A gene for Brassica napus extensin is differentially expressed on wounding (1996) Plant Mol. Biol, 30, pp. 1291-1300. , doi: 10.1007/BF00019559
  • Showalter, A.M., Keppler, B., Lichtenberg, J., Gu, D., Welch, L.R., A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins (2010) Plant Physiol, 153, pp. 485-513. , doi: 10.1104/pp.110.156554
  • Shpak, E., Barbar, E., Leykam, J.F., Kieliszewski, M.J., Contiguous hydroxyproline residues direct hydroxyproline arabinosylation in Nicotiana tabacum (2001) J. Biol. Chem, 276, pp. 11272-11278. , doi: 10.1074/jbc.M0113 23200
  • Sommer-Knudsen, J., Clarke, A.E., Bacic, A., A galactose-rich, cell-wall glycoprotein from styles of Nicotiana alata (1996) Plant J, 9, pp. 71-83. , doi: 10.1046/j.1365-313X.1996.09010071.x
  • Stratford, S., Barne, W., Hohorst, D.L., Sagert, J.G., Cotter, R., Golubiewski, A., A leucine-rich repeat region is conserved in pollen extensinlike (Pex) proteins in monocots and dicots (2001) Plant Mol. Biol, 46, pp. 43-56. , doi: 10.1023/A:1010659425399
  • Tan, L., Eberhard, S., Pattathil, S., Warder, C., Glushka, J., Yuan, C., An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein (2013) Plant Cell, 25, pp. 270-287. , doi: 10.1105/tpc.112.107334
  • Tan, L., Qiu, F., Lamport, D.T., Kieliszewski, M.J., Structure of a hydroxyproline (Hyp)-arabinogalactan polysaccharide from repetitive Ala-Hyp expressed in transgenic Nicotiana tabacum (2004) J. Biol. Chem, 279, pp. 13156-13165. , doi: 10.1074/jbc.M311864200
  • Tan, L., Showalter, A.M., Egelund, J., Hernandez-Sanchez, A., Doblin, M.S., Bacic, A., Arabinogalactan-proteins and the research challenges for these enigmatic plant cell surface proteoglycans (2012) Front. Plant Sci, 3, p. 140. , doi: 10.3389/fpls.2012.00140
  • Tan, L., Varnai, P., Lamport, D.T., Yuan, C., Xu, J., Qiu, F., Plant O-hydroxyproline arabinogalactans are composed of repeating trigalactosyl subunits with short bifurcated side chains (2010) J. Biol. Chem, 285, pp. 24575-24583. , doi: 10.1074/jbc.M109.100149
  • Tiainen, P., Myllyharju, J., Koivunen, P., Characterization of a second Arabidopsis thaliana prolyl 4-hydroxylase with distinct substrate specificity (2005) J. Biol. Chem, 280, pp. 1142-1148. , doi: 10.1074/jbc.M411109200
  • Tryfona, T., Liang, H.C., Kotake, T., Tsumuraya, Y., Stephens, E., Dupree, P., Structural characterization of Arabidopsis leaf arabinogalactan polysaccharides (2012) Plant Physiol, 160, pp. 563-666. , doi: 10.1104/pp.112.202309
  • Valentin, R., Cerclier, C., Geneix, N., Aguie-Beghin, V., Gaillard, C., Ralet, M.C., Elaboration of extensin-pectin thin film model of primary plant cell wall (2010) Langmuir, 26, pp. 9891-9898. , doi: 10.1021/la100265d
  • Velasquez, S.M., Ricardi, M.M., Dorosz, J.G., Fernandez, P.V., Nadra, A.D., Polfachin, L., O-glycosylated cell wall proteins are essential in root hair growth (2011) Science, 332, pp. 1401-1403. , doi: 10.1126/science.1206657
  • Velasquez, S.M., Salgado, S.J., Petersen, B.L., Estevez, J.M., Recent advances on the post-translational modifications of EXTs and their roles in plant cell walls (2012) Front. Plant Sci, 3, p. 93. , doi: 10.3389/fpls.2012.00093
  • Vlad, F., Spano, T., Vlad, D., Daher, F.B., Ouelhadj, A., Fragkostefanakis, S., Involvement of Arabidopsis prolyl 4 hydroxylases in hypoxia, anoxia and mechanical wounding (2007) Plant Signal. Behav, 2, pp. 368-369. , doi: 10.4161/psb.2.5.4462
  • Vlad, F., Tiainen, P., Owen, C., Spano, T., Daher, F.B., Oualid, F., Characterization of two carnation petal prolyl 4 hydroxylases (2010) Physiol. Plant, 140, pp. 199-207. , doi: 10.1111/j.1399-3054.2010.01390.x
  • Voragen, A.G.J., Coenen, G.J., Verhoef, R.P., Schols, H.A., Pectin, a versatile polysaccharide present in plant cell walls (2009) Struct. Chem, 20, pp. 263-275. , doi: 10.1007/s11224-009-9442-z
  • Wang, T., Zabotina, O., Hong, M., Pectin-cellulose interactions in the Arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance (2012) Biochemistry, 51, pp. 9846-9856. , doi: 10.1021/bi3015532
  • Willats, W.G.T., Knox, P., Mikkelsen, J.D., Pectin: New insights into an old polymer are starting to gel (2006) Trends Food Sci. Technol, 17, pp. 97-104. , doi: 10.1016/j.tifs.2005.10.008
  • Wu, H., de Graaf, B., Mariani, C., Cheung, A.Y., Hydroxyproline-rich glycoproteins in plant reproductive tissues: Structure, functions and regulation (2001) Cell. Mol. Life Sci, 58, pp. 1418-1429. , doi: 10.1007/PL00000785
  • Wu, H.M., Wang, H., Cheung, A.Y., A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower (1995) Cell, 82, pp. 395-403. , doi: 10.1016/0092-8674(95) 90428-X
  • Yuasa, K., Toyooka, K., Fukuda, H., Matsuoka, K., Membrane-anchored prolyl hydroxylase with an export signal from the endoplasmic reticulum (2005) Plant J, 41, pp. 81-94. , doi: 10.1111/j.1365-313X.2004.02279.x

Citas:

---------- APA ----------
Hijazi, M., Velasquez, S.M., Jamet, E., Estevez, J.M. & Albenne, C. (2014) . An update on post-translational modifications of hydroxyproline-rich glycoproteins: Toward a model highlighting their contribution to plant cell wall architecture. Frontiers in Plant Science, 5(AUG).
http://dx.doi.org/10.3389/fpls.2014.00395
---------- CHICAGO ----------
Hijazi, M., Velasquez, S.M., Jamet, E., Estevez, J.M., Albenne, C. "An update on post-translational modifications of hydroxyproline-rich glycoproteins: Toward a model highlighting their contribution to plant cell wall architecture" . Frontiers in Plant Science 5, no. AUG (2014).
http://dx.doi.org/10.3389/fpls.2014.00395
---------- MLA ----------
Hijazi, M., Velasquez, S.M., Jamet, E., Estevez, J.M., Albenne, C. "An update on post-translational modifications of hydroxyproline-rich glycoproteins: Toward a model highlighting their contribution to plant cell wall architecture" . Frontiers in Plant Science, vol. 5, no. AUG, 2014.
http://dx.doi.org/10.3389/fpls.2014.00395
---------- VANCOUVER ----------
Hijazi, M., Velasquez, S.M., Jamet, E., Estevez, J.M., Albenne, C. An update on post-translational modifications of hydroxyproline-rich glycoproteins: Toward a model highlighting their contribution to plant cell wall architecture. Front. Plant Sci. 2014;5(AUG).
http://dx.doi.org/10.3389/fpls.2014.00395