Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Dendritic cells (DCs) play a pivotal role in the orchestration of immune responses, and are thus key targets in cancer vaccine design. Since the 2010 FDA approval of the first cancer DC-based vaccine (Sipuleucel-T), there has been a surge of interest in exploiting these cells as a therapeutic option for the treatment of tumors of diverse origin. In spite of the encouraging results obtained in the clinic, many elements of DC-based vaccination strategies need to be optimized. In this context, the use of experimental cancer models can help direct efforts toward an effective vaccine design. This paper reviews recent findings in murine models regarding the antitumoral mechanisms of DC-based vaccination, covering issues related to antigen sources, the use of adjuvants and maturing agents, and the role of DC subsets and their interaction in the initiation of antitumoral immune responses. The summary of such diverse aspects will highlight advantages and drawbacks in the use of murine models, and contribute to the design of successful DC-based translational approaches for cancer treatment. © 2015 Mac Keon, Ruiz, Gazzaniga and Wainstok.

Registro:

Documento: Artículo
Título:Dendritic cell-based vaccination in cancer: Therapeutic implications emerging from murine models
Autor:Mac Keon, S.; Ruiz, M.S.; Gazzaniga, S.; Wainstok, R.
Filiación:Laboratorio de Cancerología, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Buenos Aires, Argentina
Centro de Investigaciones Oncológicas, Fundación para la Investigación, Docencia y Prevención del Cáncer (FUCA), Buenos Aires, Argentina
Laboratorio de Biología Tumoral, Departamento de Química Biológica IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Adjuvants; Cancer immunotherapy; Dendritic cell maturation; Dendritic cell subsets; Dendritic cell-based vaccines; Dendritic cells; CD103 antigen; CD11b antigen; dendritic cell vaccine; imiquimod; indoleamine 2, 3 dioxygenase; inducible T cell costimulator; interleukin 2 receptor; ovalbumin; pattern recognition receptor; toll like receptor 7; toll like receptor adaptor molecule 1; tumor necrosis factor alpha; unclassified drug; antigen presenting cell; bone marrow derived dendritic cell; cancer model; cancer therapy; CD8+ T lymphocyte; cytotoxic T lymphocyte; dendritic cell; human; immune response; Langerhans cell; major histocompatibility complex; monocyte; mouse; murine model; neoplasm; nonhuman; phase 1 clinical trial (topic); plasmacytoid dendritic cell; Review; tumor microenvironment; vaccination
Año:2015
Volumen:6
Número:MAY
DOI: http://dx.doi.org/10.3389/fimmu.2015.00243
Título revista:Frontiers in Immunology
Título revista abreviado:Front. Immunol.
ISSN:16643224
CAS:CD103 antigen, 269047-90-7; imiquimod, 99011-02-6; ovalbumin, 77466-29-6
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16643224_v6_nMAY_p_MacKeon

Referencias:

  • Coulie, P.G., Van den Eynde, B.J., van der Bruggen, P., Boon, T., Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy (2014) Nat Rev Cancer, 14 (2), pp. 135-146
  • Baitsch, L., Fuertes-Marraco, S.A., Legat, A., Meyer, C., Speiser, D.E., The three main stumbling blocks for anticancer T cells (2012) Trends Immunol, 33 (7), pp. 364-372
  • Crespo, J., Sun, H., Welling, T.H., Tian, Z., Zou, W., T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment (2013) Curr Opin Immunol, 25 (2), pp. 214-221
  • Coulie, P.G., Brichard, V., Van Pel, A., Wolfel, T., Schneider, J., Traversari, C., A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas (1994) J Exp Med, 180 (1), pp. 35-42
  • Parmiani, G., De Filippo, A., Novellino, L., Castelli, C., Unique human tumor antigens: immunobiology and use in clinical trials (2007) J Immunol, 178 (4), pp. 1975-1979
  • Palucka, K., Banchereau, J., Dendritic-cell-based therapeutic cancer vaccines (2013) Immunity, 39 (1), pp. 38-48
  • Banchereau, J., Steinman, R.M., Dendritic cells and the control of immunity (1998) Nature, 392 (6673), pp. 245-252
  • Mescher, M.F., Curtsinger, J.M., Agarwal, P., Casey, K.A., Gerner, M., Hammerbeck, C.D., Signals required for programming effector and memory development by CD8+ T cells (2006) Immunol Rev, 211, pp. 81-92
  • Banerjee, A., Gordon, S.M., Intlekofer, A.M., Paley, M.A., Mooney, E.C., Lindsten, T., Cutting edge: the transcription factor eomesodermin enables CD8+ T cells to compete for the memory cell niche (2010) J Immunol, 185 (9), pp. 4988-4992
  • Woo, S.R., Corrales, L., Gajewski, T.F., Innate immune recognition of cancer (2015) Annu Rev Immunol, 33, pp. 445-474
  • Anguille, S., Smits, E.L., Lion, E., van Tendeloo, V.F., Berneman, Z.N., Clinical use of dendritic cells for cancer therapy (2014) Lancet Oncol, 15 (7), pp. e257-e267
  • Butterfield, L.H., Dendritic cells in cancer immunotherapy clinical trials: are we making progress? (2013) Front Immunol, 4, p. 454
  • Galluzzi, L., Senovilla, L., Vacchelli, E., Eggermont, A., Fridman, W.H., Galon, J., Trial watch: dendritic cell-based interventions for cancer therapy (2012) Oncoimmunology, 1 (7), pp. 1111-1134
  • Steinman, R.M., Cohn, Z.A., Identification of a novel cell type in peripheral lymphoid organs of mice I. Morphology, quantitation, tissue distribution (1973) J Exp Med, 137 (5), pp. 1142-1162
  • Gross, L., Intradermal immunization of C3H mice against a sarcoma that originated in an animal of the same line (1943) Cancer Res, 3, pp. 326-333
  • Klein, G., Klein, E., Immune surveillance against virus-induced tumors and nonrejectability of spontaneous tumors: contrasting consequences of host versus tumor evolution (1977) Proc Natl Acad Sci U S A, 74 (5), pp. 2121-2125
  • Cheon, D.J., Orsulic, S., Mouse models of cancer (2011) Annu Rev Pathol, 6, pp. 95-119
  • Fidler, I.J., Tumor heterogeneity and the biology of cancer invasion and metastasis (1978) Cancer Res, 38 (9), pp. 2651-2660
  • Nanni, P., Colombo, M.P., De Giovanni, C., Lollini, P.L., Nicoletti, G., Parmiani, G., Impaired H-2 expression in B16 melanoma variants (1983) J Immunogenet, 10 (5), pp. 361-370
  • Overwijk, W.W., Restifo, N.P., B16 as a mouse model for human melanoma (2001) Curr Protoc Immunol, 20. , 20.1
  • Davies, H., Bignell, G.R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Mutations of the BRAF gene in human cancer (2002) Nature, 417 (6892), pp. 949-954
  • Melnikova, V.O., Bolshakov, S.V., Walker, C., Ananthaswamy, H.N., Genomic alterations in spontaneous and carcinogen-induced murine melanoma cell lines (2004) Oncogene, 23 (13), pp. 2347-2356
  • Dankort, D., Curley, D.P., Cartlidge, R.A., Nelson, B., Karnezis, A.N., Damsky, W.E., Jr., Braf (V600E) cooperates with Pten loss to induce metastatic melanoma (2009) Nat Genet, 41 (5), pp. 544-552
  • Jenkins, M.H., Steinberg, S.M., Alexander, M.P., Fisher, J.L., Ernstoff, M.S., Turk, M.J., Multiple murine BRaf (V600E) melanoma cell lines with sensitivity to PLX4032 (2014) Pigment Cell Melanoma Res, 27 (3), pp. 495-501
  • Rappaport, A., Johnson, L., Genetically engineered knock-in and conditional knock-in mouse models of cancer (2014) Cold Spring Harb Protoc, 2014 (9), pp. 897-911
  • Williams, S.A., Anderson, W.C., Santaguida, M.T., Dylla, S.J., Patient-derived xenografts, the cancer stem cell paradigm, and cancer pathobiology in the 21st century (2013) Lab Invest, 93 (9), pp. 970-982
  • Shultz, L.D., Brehm, M.A., Garcia-Martinez, J.V., Greiner, D.L., Humanized mice for immune system investigation: progress, promise and challenges (2012) Nat Rev Immunol, 12 (11), pp. 786-798
  • Sugamura, K., Asao, H., Kondo, M., Tanaka, N., Ishii, N., Ohbo, K., The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID (1996) Annu Rev Immunol, 14, pp. 179-205
  • Cao, X., Shores, E.W., Hu-Li, J., Anver, M.R., Kelsall, B.L., Russell, S.M., Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain (1995) Immunity, 2 (3), pp. 223-238
  • Shultz, L.D., Lyons, B.L., Burzenski, L.M., Gott, B., Chen, X., Chaleff, S., Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells (2005) J Immunol, 174 (10), pp. 6477-6489
  • Shultz, L.D., Ishikawa, F., Greiner, D.L., Humanized mice in translational biomedical research (2007) Nat Rev Immunol, 7 (2), pp. 118-130
  • Spranger, S., Frankenberger, B., Schendel, D.J., NOD/scid IL-2Rg (null) mice: a preclinical model system to evaluate human dendritic cell-based vaccine strategies in vivo (2012) J Transl Med, 10, p. 30
  • Harui, A., Kiertscher, S.M., Roth, M.D., Reconstitution of huPBL-NSG mice with donor-matched dendritic cells enables antigen-specific T-cell activation (2011) J Neuroimmune Pharmacol, 6 (1), pp. 148-157
  • Rongvaux, A., Willinger, T., Martinek, J., Strowig, T., Gearty, S.V., Teichmann, L.L., Development and function of human innate immune cells in a humanized mouse model (2014) Nat Biotechnol, 32 (4), pp. 364-372
  • Drake, A.C., Chen, Q., Chen, J., Engineering humanized mice for improved hematopoietic reconstitution (2012) Cell Mol Immunol, 9 (3), pp. 215-224
  • Morse, M.A., Zhou, L.J., Tedder, T.F., Lyerly, H.K., Smith, C., Generation of dendritic cells in vitro from peripheral blood mononuclear cells with granulocyte-macrophage-colony-stimulating factor, interleukin-4, and tumor necrosis factor-alpha for use in cancer immunotherapy (1997) Ann Surg, 226 (1), pp. 6-16
  • Mitchell, D., Yong, M., Schroder, W., Black, M., Tirrell, M., Olive, C., Dual stimulation of MyD88-dependent toll-like receptors induces synergistically enhanced production of inflammatory cytokines in murine bone marrow-derived dendritic cells (2010) J Infect Dis, 202 (2), pp. 318-329
  • Mac Keon, S., Gazzaniga, S., Mallerman, J., Bravo, A.I., Mordoh, J., Wainstok, R., Vaccination with dendritic cells charged with apoptotic/necrotic B16 melanoma induces the formation of subcutaneous lymphoid tissue (2010) Vaccine, 28 (51), pp. 8162-8168
  • Ruiz, M.S., Mac Keon, S., Campisano, S., Bravo, A.I., Gazzaniga, S., Wainstok, R., CD207 (+) cells recruitment to the vaccination site and draining lymph nodes after the administration of DC-Apo/Nec vaccine in mice (2014) Vaccine, 32 (11), pp. 1229-1232
  • Suzuki, H., Wang, B., Shivji, G.M., Toto, P., Amerio, P., Tomai, M.A., Imiquimod, a topical immune response modifier, induces migration of Langerhans cells (2000) J Invest Dermatol, 114 (1), pp. 135-141
  • Nair, S., McLaughlin, C., Weizer, A., Su, Z., Boczkowski, D., Dannull, J., Injection of immature dendritic cells into adjuvant-treated skin obviates the need for ex vivo maturation (2003) J Immunol, 171 (11), pp. 6275-6282
  • Wei, H., Wang, S., Zhang, D., Hou, S., Qian, W., Li, B., Targeted delivery of tumor antigens to activated dendritic cells via CD11c molecules induces potent antitumor immunity in mice (2009) Clin Cancer Res, 15 (14), pp. 4612-4621
  • Wang, B., Zaidi, N., He, L.Z., Zhang, L., Kuroiwa, J.M., Keler, T., Targeting of the non-mutated tumor antigen HER2/neu to mature dendritic cells induces an integrated immune response that protects against breast cancer in mice (2012) Breast Cancer Res, 14 (2), p. R39
  • Matheoud, D., Perie, L., Hoeffel, G., Vimeux, L., Parent, I., Maranon, C., Cross-presentation by dendritic cells from live cells induces protective immune responses in vivo (2010) Blood, 115 (22), pp. 4412-4420
  • Matheoud, D., Baey, C., Vimeux, L., Tempez, A., Valente, M., Louche, P., Dendritic cells crosspresent antigens from live B16 cells more efficiently than from apoptotic cells and protect from melanoma in a therapeutic model (2011) PLoS One, 6 (4)
  • Ma, F., Zhang, J., Zhang, C., The TLR7 agonists imiquimod and gardiquimod improve DC-based immunotherapy for melanoma in mice (2010) Cell Mol Immunol, 7 (5), pp. 381-388
  • Flacher, V., Tripp, C.H., Mairhofer, D.G., Steinman, R.M., Stoitzner, P., Idoyaga, J., Murine Langerin+ dermal dendritic cells prime CD8+ T cells while Langerhans cells induce cross-tolerance (2014) EMBO Mol Med, 6 (9), pp. 1191-1204
  • Keller, A.M., Xiao, Y., Peperzak, V., Naik, S.H., Borst, J., Costimulatory ligand CD70 allows induction of CD8+ T-cell immunity by immature dendritic cells in a vaccination setting (2009) Blood, 113 (21), pp. 5167-5175
  • Sanchez, P.J., McWilliams, J.A., Haluszczak, C., Yagita, H., Kedl, R.M., Combined TLR/CD40 stimulation mediates potent cellular immunity by regulating dendritic cell expression of CD70 in vivo (2007) J Immunol, 178 (3), pp. 1564-1572
  • McWilliams, J.A., Sanchez, P.J., Haluszczak, C., Gapin, L., Kedl, R.M., Multiple innate signaling pathways cooperate with CD40 to induce potent, CD70-dependent cellular immunity (2010) Vaccine, 28 (6), pp. 1468-1476
  • Eberting, C.L., Shrayer, D.P., Butmarc, J., Falanga, V., Histologic progression of B16 F10 metastatic melanoma in C57BL/6 mice over a six week time period: distant metastases before local growth (2004) J Dermatol, 31 (4), pp. 299-304
  • Bobek, V., Kolostova, K., Pinterova, D., Kacprzak, G., Adamiak, J., Kolodziej, J., A clinically relevant, syngeneic model of spontaneous, highly metastatic B16 mouse melanoma (2010) Anticancer Res, 30 (12), pp. 4799-4803
  • Xia, S., Wei, J., Wang, J., Sun, H., Zheng, W., Li, Y., A requirement of dendritic cell-derived interleukin-27 for the tumor infiltration of regulatory T cells (2014) J Leukoc Biol, 95 (5), pp. 733-742
  • Richmond, A., Su, Y., Mouse xenograft models vs GEM models for human cancer therapeutics (2008) Dis Model Mech, 1 (2-3), pp. 78-82
  • Oflazoglu, E., Elliott, M., Takita, H., Ferrone, S., Henderson, R.A., Repasky, E.A., Adoptively transferred human lung tumor specific cytotoxic T cells can control autologous tumor growth and shape tumor phenotype in a SCID mouse xenograft model (2007) J Transl Med, 5, p. 29
  • Hylander, B.L., Punt, N., Tang, H., Hillman, J., Vaughan, M., Bshara, W., Origin of the vasculature supporting growth of primary patient tumor xenografts (2013) J Transl Med, 11, p. 110
  • Eirew, P., Steif, A., Khattra, J., Ha, G., Yap, D., Farahani, H., Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution (2014) Nature, 518, pp. 422-426
  • Pino, S., Brehm, M.A., Covassin-Barberis, L., King, M., Gott, B., Chase, T.H., Development of novel major histocompatibility complex class I and class II-deficient NOD-SCID IL2R gamma chain knockout mice for modeling human xenogeneic graft-versus-host disease (2010) Methods Mol Biol, 602, pp. 105-117
  • Mishra, S., Lavelle, B.J., Desrosiers, J., Ardito, M.T., Terry, F., Martin, W.D., Dendritic cell-mediated, DNA-based vaccination against hepatitis C induces the multi-epitope-specific response of humanized, HLA transgenic mice (2014) PLoS One, 9 (8)
  • Meixlsperger, S., Leung, C.S., Ramer, P.C., Pack, M., Vanoaica, L.D., Breton, G., CD141+ dendritic cells produce prominent amounts of IFN-alpha after dsRNA recognition and can be targeted via DEC-205 in humanized mice (2013) Blood, 121 (25), pp. 5034-5044
  • Malissen, B., Tamoutounour, S., Henri, S., The origins and functions of dendritic cells and macrophages in the skin (2014) Nat Rev Immunol, 14 (6), pp. 417-428
  • Merad, M., Sathe, P., Helft, J., Miller, J., Mortha, A., The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting (2013) Annu Rev Immunol, 31, pp. 563-604
  • Miller, J.C., Brown, B.D., Shay, T., Gautier, E.L., Jojic, V., Cohain, A., Deciphering the transcriptional network of the dendritic cell lineage (2012) Nat Immunol, 13 (9), pp. 888-899
  • Belz, G.T., Nutt, S.L., Transcriptional programming of the dendritic cell network (2012) Nat Rev Immunol, 12 (2), pp. 101-113
  • Stoecklinger, A., Eticha, T.D., Mesdaghi, M., Kissenpfennig, A., Malissen, B., Thalhamer, J., Langerin+ dermal dendritic cells are critical for CD8+ T cell activation and IgH gamma-1 class switching in response to gene gun vaccines (2011) J Immunol, 186 (3), pp. 1377-1383
  • Dudziak, D., Kamphorst, A.O., Heidkamp, G.F., Buchholz, V.R., Trumpfheller, C., Yamazaki, S., Differential antigen processing by dendritic cell subsets in vivo (2007) Science, 315 (5808), pp. 107-111
  • Xu, Y., Zhan, Y., Lew, A.M., Naik, S.H., Kershaw, M.H., Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking (2007) J Immunol, 179 (11), pp. 7577-7584
  • Naik, S.H., Proietto, A.I., Wilson, N.S., Dakic, A., Schnorrer, P., Fuchsberger, M., Cutting edge: generation of splenic CD8+ and CD8-dendritic cell equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures (2005) J Immunol, 174 (11), pp. 6592-6597
  • Dalod, M., Chelbi, R., Malissen, B., Lawrence, T., Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming (2014) EMBO J, 33 (10), pp. 1104-1116
  • Schlitzer, A., McGovern, N., Teo, P., Zelante, T., Atarashi, K., Low, D., IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses (2013) Immunity, 38 (5), pp. 970-983
  • Shortman, K., Heath, W.R., The CD8+ dendritic cell subset (2010) Immunol Rev, 234 (1), pp. 18-31
  • Ginhoux, F., Liu, K., Helft, J., Bogunovic, M., Greter, M., Hashimoto, D., The origin and development of nonlymphoid tissue CD103+ DCs (2009) J Exp Med, 206 (13), pp. 3115-3130
  • Iwasaki, A., Medzhitov, R., Toll-like receptor control of the adaptive immune responses (2004) Nat Immunol, 5 (10), pp. 987-995
  • Mitsui, H., Watanabe, T., Saeki, H., Mori, K., Fujita, H., Tada, Y., Differential expression and function of toll-like receptors in Langerhans cells: comparison with splenic dendritic cells (2004) J Invest Dermatol, 122 (1), pp. 95-102
  • Sancho, D., Mourao-Sa, D., Joffre, O.P., Schulz, O., Rogers, N.C., Pennington, D.J., Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin (2008) J Clin Invest, 118 (6), pp. 2098-2110
  • Liu, K., Victora, G.D., Schwickert, T.A., Guermonprez, P., Meredith, M.M., Yao, K., In vivo analysis of dendritic cell development and homeostasis (2009) Science, 324 (5925), pp. 392-397
  • Heng, T.S., Painter, M.W., The immunological genome project: networks of gene expression in immune cells (2008) Nat Immunol, 9 (10), pp. 1091-1094
  • Drobits, B., Holcmann, M., Amberg, N., Swiecki, M., Grundtner, R., Hammer, M., Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells (2012) J Clin Invest, 122 (2), pp. 575-585
  • Mouries, J., Moron, G., Schlecht, G., Escriou, N., Dadaglio, G., Leclerc, C., Plasmacytoid dendritic cells efficiently cross-prime naive T cells in vivo after TLR activation (2008) Blood, 112 (9), pp. 3713-3722
  • Guery, L., Dubrot, J., Lippens, C., Brighouse, D., Malinge, P., Irla, M., Ag-presenting CpG-activated pDCs prime Th17 cells that induce tumor regression (2014) Cancer Res, 74 (22), pp. 6430-6440
  • Liu, C., Lou, Y., Lizee, G., Qin, H., Liu, S., Rabinovich, B., Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell cross-priming and tumor regression in mice (2008) J Clin Invest, 118 (3), pp. 1165-1175
  • Treilleux, I., Blay, J.Y., Bendriss-Vermare, N., Ray-Coquard, I., Bachelot, T., Guastalla, J.P., Dendritic cell infiltration and prognosis of early stage breast cancer (2004) Clin Cancer Res, 10 (22), pp. 7466-7474
  • Sisirak, V., Faget, J., Gobert, M., Goutagny, N., Vey, N., Treilleux, I., Impaired IFN-alpha production by plasmacytoid dendritic cells favors regulatory T-cell expansion that may contribute to breast cancer progression (2012) Cancer Res, 72 (20), pp. 5188-5197
  • Wei, S., Kryczek, I., Zou, L., Daniel, B., Cheng, P., Mottram, P., Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma (2005) Cancer Res, 65 (12), pp. 5020-5026
  • Watkins, S.K., Zhu, Z., Riboldi, E., Shafer-Weaver, K.A., Stagliano, K.E., Sklavos, M.M., FOXO3 programs tumor-associated DCs to become tolerogenic in human and murine prostate cancer (2011) J Clin Invest, 121 (4), pp. 1361-1372
  • Conrad, C., Gregorio, J., Wang, Y.H., Ito, T., Meller, S., Hanabuchi, S., Plasmacytoid dendritic cells promote immunosuppression in ovarian cancer via ICOS costimulation of Foxp3 (+) T-regulatory cells (2012) Cancer Res, 72 (20), pp. 5240-5249
  • Sorrentino, R., Morello, S., Luciano, A., Crother, T.R., Maiolino, P., Bonavita, E., Plasmacytoid dendritic cells alter the antitumor activity of CpG-oligodeoxynucleotides in a mouse model of lung carcinoma (2010) J Immunol, 185 (8), pp. 4641-4650
  • Le Mercier, I., Poujol, D., Sanlaville, A., Sisirak, V., Gobert, M., Durand, I., Tumor promotion by intratumoral plasmacytoid dendritic cells is reversed by TLR7 ligand treatment (2013) Cancer Res, 73 (15), pp. 4629-4640
  • Blasius, A.L., Giurisato, E., Cella, M., Schreiber, R.D., Shaw, A.S., Colonna, M., Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation (2006) J Immunol, 177 (5), pp. 3260-3265
  • Sharma, M.D., Baban, B., Chandler, P., Hou, D.Y., Singh, N., Yagita, H., Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase (2007) J Clin Invest, 117 (9), pp. 2570-2582
  • Johnson, B.A., III, Kahler, D.J., Baban, B., Chandler, P.R., Kang, B., Shimoda, M., B-lymphoid cells with attributes of dendritic cells regulate T cells via indoleamine 2,3-dioxygenase (2010) Proc Natl Acad Sci U S A, 107 (23), pp. 10644-10648
  • Vinay, D.S., Kim, C.H., Chang, K.H., Kwon, B.S., PDCA expression by B lymphocytes reveals important functional attributes (2010) J Immunol, 184 (2), pp. 807-815
  • Faget, J., Bendriss-Vermare, N., Gobert, M., Durand, I., Olive, D., Biota, C., ICOS-ligand expression on plasmacytoid dendritic cells supports breast cancer progression by promoting the accumulation of immunosuppressive CD4+ T cells (2012) Cancer Res, 72 (23), pp. 6130-6141
  • Borkowski, T.A., Letterio, J.J., Farr, A.G., Udey, M.C., A role for endogenous transforming growth factor beta 1 in Langerhans cell biology: the skin of transforming growth factor beta 1 null mice is devoid of epidermal Langerhans cells (1996) J Exp Med, 184 (6), pp. 2417-2422
  • Nagao, K., Ginhoux, F., Leitner, W.W., Motegi, S., Bennett, C.L., Clausen, B.E., Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions (2009) Proc Natl Acad Sci U S A, 106 (9), pp. 3312-3317
  • Poulin, L.F., Henri, S., de Bovis, B., Devilard, E., Kissenpfennig, A., Malissen, B., The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells (2007) J Exp Med, 204 (13), pp. 3119-3131
  • Ginhoux, F., Collin, M.P., Bogunovic, M., Abel, M., Leboeuf, M., Helft, J., Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state (2007) J Exp Med, 204 (13), pp. 3133-3146
  • Douillard, P., Stoitzner, P., Tripp, C.H., Clair-Moninot, V., Ait-Yahia, S., McLellan, A.D., Mouse lymphoid tissue contains distinct subsets of langerin/CD207 dendritic cells, only one of which represents epidermal-derived Langerhans cells (2005) J Invest Dermatol, 125 (5), pp. 983-994
  • Flacher, V., Douillard, P., Ait-Yahia, S., Stoitzner, P., Clair-Moninot, V., Romani, N., Expression of langerin/CD207 reveals dendritic cell heterogeneity between inbred mouse strains (2008) Immunology, 123 (3), pp. 339-347
  • Henri, S., Poulin, L.F., Tamoutounour, S., Ardouin, L., Guilliams, M., de Bovis, B., CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells (2010) J Exp Med, 207 (1), pp. 189-206
  • Idoyaga, J., Cheong, C., Suda, K., Suda, N., Kim, J.Y., Lee, H., Cutting edge: langerin/CD207 receptor on dendritic cells mediates efficient antigen presentation on MHC I and II products in vivo (2008) J Immunol, 180 (6), pp. 3647-3650
  • Stoitzner, P., Green, L.K., Jung, J.Y., Price, K.M., Tripp, C.H., Malissen, B., Tumor immunotherapy by epicutaneous immunization requires Langerhans cells (2008) J Immunol, 180 (3), pp. 1991-1998
  • Flacher, V., Tripp, C.H., Stoitzner, P., Haid, B., Ebner, S., Del Frari, B., Epidermal Langerhans cells rapidly capture and present antigens from C-type lectin-targeting antibodies deposited in the dermis (2010) J Invest Dermatol, 130 (3), pp. 755-762
  • Hildner, K., Edelson, B.T., Purtha, W.E., Diamond, M., Matsushita, H., Kohyama, M., Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity (2008) Science, 322 (5904), pp. 1097-1100
  • Fuertes, M.B., Kacha, A.K., Kline, J., Woo, S.R., Kranz, D.M., Murphy, K.M., Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells (2011) J Exp Med, 208 (10), pp. 2005-2016
  • Diamond, M.S., Kinder, M., Matsushita, H., Mashayekhi, M., Dunn, G.P., Archambault, J.M., Type I interferon is selectively required by dendritic cells for immune rejection of tumors (2011) J Exp Med, 208 (10), pp. 1989-2003
  • Azadmehr, A., Pourfathollah, A.A., Amirghofran, Z., Hassan, Z.M., Moazzeni, S.M., Enhancement of Th1 immune response by CD8alpha (+) dendritic cells loaded with heat shock proteins enriched tumor extract in tumor-bearing mice (2009) Cell Immunol, 260 (1), pp. 28-32
  • Farrand, K.J., Dickgreber, N., Stoitzner, P., Ronchese, F., Petersen, T.R., Hermans, I.F., Langerin+ CD8alpha+ dendritic cells are critical for cross-priming and IL-12 production in response to systemic antigens (2009) J Immunol, 183 (12), pp. 7732-7742
  • Macho-Fernandez, E., Cruz, L.J., Ghinnagow, R., Fontaine, J., Bialecki, E., Frisch, B., Targeted delivery of alpha-galactosylceramide to CD8alpha+ dendritic cells optimizes type I NKT cell-based antitumor responses (2014) J Immunol, 193 (2), pp. 961-969
  • Arora, P., Baena, A., Yu, K.O., Saini, N.K., Kharkwal, S.S., Goldberg, M.F., A single subset of dendritic cells controls the cytokine bias of natural killer T cell responses to diverse glycolipid antigens (2014) Immunity, 40 (1), pp. 105-116
  • Salio, M., Silk, J.D., Cerundolo, V., Recent advances in processing and presentation of CD1 bound lipid antigens (2010) Curr Opin Immunol, 22 (1), pp. 81-88
  • Poulin, L.F., Reyal, Y., Uronen-Hansson, H., Schraml, B.U., Sancho, D., Murphy, K.M., DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues (2012) Blood, 119 (25), pp. 6052-6062
  • Cerovic, V., Houston, S.A., Scott, C.L., Aumeunier, A., Yrlid, U., Mowat, A.M., Intestinal CD103 (-) dendritic cells migrate in lymph and prime effector T cells (2013) Mucosal Immunol, 6 (1), pp. 104-113
  • Desch, A.N., Randolph, G.J., Murphy, K., Gautier, E.L., Kedl, R.M., Lahoud, M.H., CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen (2011) J Exp Med, 208 (9), pp. 1789-1797
  • Decrausaz, L., Domingos-Pereira, S., Duc, M., Bobst, M., Romero, P., Schiller, J.T., Parenteral is more efficient than mucosal immunization to induce regression of human papillomavirus-associated genital tumors (2011) Int J Cancer, 129 (3), pp. 762-772
  • Sandoval, F., Terme, M., Nizard, M., Badoual, C., Bureau, M.F., Freyburger, L., Mucosal imprinting of vaccine-induced CD8 (+) T cells is crucial to inhibit the growth of mucosal tumors (2013) Sci Transl Med, 5 (172)
  • Kim-Schulze, S., Kim, H.S., Wainstein, A., Kim, D.W., Yang, W.C., Moroziewicz, D., Intrarectal vaccination with recombinant vaccinia virus expressing carcinoembronic antigen induces mucosal and systemic immunity and prevents progression of colorectal cancer (2008) J Immunol, 181 (11), pp. 8112-8119
  • Broz, M.L., Binnewies, M., Boldajipour, B., Nelson, A.E., Pollack, J.L., Erle, D.J., Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity (2014) Cancer Cell, 26 (5), pp. 638-652
  • Woo, S.R., Fuertes, M.B., Corrales, L., Spranger, S., Furdyna, M.J., Leung, M.Y., STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors (2014) Immunity, 41 (5), pp. 830-842
  • Schulz, O., Jaensson, E., Persson, E.K., Liu, X., Worbs, T., Agace, W.W., Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions (2009) J Exp Med, 206 (13), pp. 3101-3114
  • Lewis, K.L., Caton, M.L., Bogunovic, M., Greter, M., Grajkowska, L.T., Ng, D., Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine (2011) Immunity, 35 (5), pp. 780-791
  • Guermonprez, P., Khelef, N., Blouin, E., Rieu, P., Ricciardi-Castagnoli, P., Guiso, N., The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha (M)beta (2) integrin (CD11b/CD18) (2001) J Exp Med, 193 (9), pp. 1035-1044
  • Dadaglio, G., Fayolle, C., Zhang, X., Ryffel, B., Oberkampf, M., Felix, T., Antigen targeting to CD11b+ dendritic cells in association with TLR4/TRIF signaling promotes strong CD8+ T cell responses (2014) J Immunol, 193 (4), pp. 1787-1798
  • Segura, E., Amigorena, S., Inflammatory dendritic cells in mice and humans (2013) Trends Immunol, 34 (9), pp. 440-445
  • Dominguez, P.M., Ardavin, C., Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation (2010) Immunol Rev, 234 (1), pp. 90-104
  • Nagai, Y., Garrett, K.P., Ohta, S., Bahrun, U., Kouro, T., Akira, S., Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment (2006) Immunity, 24 (6), pp. 801-812
  • Segura, E., Amigorena, S., Identification of human inflammatory dendritic cells (2013) Oncoimmunology, 2 (5)
  • Ma, Y., Adjemian, S., Mattarollo, S.R., Yamazaki, T., Aymeric, L., Yang, H., Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells (2013) Immunity, 38 (4), pp. 729-741
  • Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor (1992) J Exp Med, 176 (6), pp. 1693-1702
  • Labeur, M.S., Roters, B., Pers, B., Mehling, A., Luger, T.A., Schwarz, T., Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage (1999) J Immunol, 162 (1), pp. 168-175
  • Goldszmid, R.S., Idoyaga, J., Bravo, A.I., Steinman, R., Mordoh, J., Wainstok, R., Dendritic cells charged with apoptotic tumor cells induce long-lived protective CD4+ and CD8+ T cell immunity against B16 melanoma (2003) J Immunol, 171 (11), pp. 5940-5947
  • Campisano, S., Mac Keon, S., Gazzaniga, S., Ruiz, M.S., Traian, M.D., Mordoh, J., Anti-melanoma vaccinal capacity of CD11c-positive and-negative cell populations present in GM-CSF cultures derived from murine bone marrow precursors (2013) Vaccine, 31 (2), pp. 354-361
  • Brasel, K., De Smedt, T., Smith, J.L., Maliszewski, C.R., Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures (2000) Blood, 96 (9), pp. 3029-3039
  • Chen, W., Antonenko, S., Sederstrom, J.M., Liang, X., Chan, A.S., Kanzler, H., Thrombopoietin cooperates with FLT3-ligand in the generation of plasmacytoid dendritic cell precursors from human hematopoietic progenitors (2004) Blood, 103 (7), pp. 2547-2553
  • Poulin, L.F., Salio, M., Griessinger, E., Anjos-Afonso, F., Craciun, L., Chen, J.L., Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells (2010) J Exp Med, 207 (6), pp. 1261-1271
  • Balan, S., Ollion, V., Colletti, N., Chelbi, R., Montanana-Sanchis, F., Liu, H., Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells (2014) J Immunol, 193 (4), pp. 1622-1635
  • Lee, J., Breton, G., Oliveira, T.Y., Zhou, Y.J., Aljoufi, A., Puhr, S., Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow (2015) J Exp Med, 212 (3), pp. 385-399
  • Petersen, T.R., Sika-Paotonu, D., Knight, D.A., Simkins, H.M., Hermans, I.F., Exploiting the role of endogenous lymphoid-resident dendritic cells in the priming of NKT cells and CD8+ T cells to dendritic cell-based vaccines (2011) PLoS One, 6 (3)
  • Allan, R.S., Waithman, J., Bedoui, S., Jones, C.M., Villadangos, J.A., Zhan, Y., Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming (2006) Immunity, 25 (1), pp. 153-162
  • Kleindienst, P., Brocker, T., Endogenous dendritic cells are required for amplification of T cell responses induced by dendritic cell vaccines in vivo (2003) J Immunol, 170 (6), pp. 2817-2823
  • Yewdall, A.W., Drutman, S.B., Jinwala, F., Bahjat, K.S., Bhardwaj, N., CD8+ T cell priming by dendritic cell vaccines requires antigen transfer to endogenous antigen presenting cells (2010) PLoS One, 5 (6)
  • Ali, O.A., Emerich, D., Dranoff, G., Mooney, D.J., In situ regulation of DC subsets and T cells mediates tumor regression in mice (2009) Sci Transl Med, 1 (8)
  • Lou, Y., Liu, C., Kim, G.J., Liu, Y.J., Hwu, P., Wang, G., Plasmacytoid dendritic cells synergize with myeloid dendritic cells in the induction of antigen-specific antitumor immune responses (2007) J Immunol, 178 (3), pp. 1534-1541
  • Dolan, B.P., Gibbs, K.D., Jr., Ostrand-Rosenberg, S., Dendritic cells cross-dressed with peptide MHC class I complexes prime CD8+ T cells (2006) J Immunol, 177 (9), pp. 6018-6024
  • Dolan, B.P., Gibbs, K.D., Jr., Ostrand-Rosenberg, S., Tumor-specific CD4+ T cells are activated by "cross-dressed" dendritic cells presenting peptide-MHC class II complexes acquired from cell-based cancer vaccines (2006) J Immunol, 176 (3), pp. 1447-1455
  • Li, L., Kim, S., Herndon, J.M., Goedegebuure, P., Belt, B.A., Satpathy, A.T., Cross-dressed CD8alpha+/CD103+ dendritic cells prime CD8+ T cells following vaccination (2012) Proc Natl Acad Sci U S A, 109 (31), pp. 12716-12721
  • Groettrup, M., Kirk, C.J., Basler, M., Proteasomes in immune cells: more than peptide producers? (2010) Nat Rev Immunol, 10 (1), pp. 73-78
  • Guillaume, B., Stroobant, V., Bousquet-Dubouch, M.P., Colau, D., Chapiro, J., Parmentier, N., Analysis of the processing of seven human tumor antigens by intermediate proteasomes (2012) J Immunol, 189 (7), pp. 3538-3547
  • Macagno, A., Gilliet, M., Sallusto, F., Lanzavecchia, A., Nestle, F.O., Groettrup, M., Dendritic cells up-regulate immunoproteasomes and the proteasome regulator PA28 during maturation (1999) Eur J Immunol, 29 (12), pp. 4037-4042
  • Dannull, J., Haley, N.R., Archer, G., Nair, S., Boczkowski, D., Harper, M., Melanoma immunotherapy using mature DCs expressing the constitutive proteasome (2013) J Clin Invest, 123 (7), pp. 3135-3145
  • Butterfield, L.H., Palucka, A.K., Britten, C.M., Dhodapkar, M.V., Hakansson, L., Janetzki, S., Recommendations from the iSBTc-SITC/FDA/NCI workshop on immunotherapy biomarkers (2011) Clin Cancer Res, 17 (10), pp. 3064-3076
  • Castle, J.C., Kreiter, S., Diekmann, J., Lower, M., van de Roemer, N., de Graaf, J., Exploiting the mutanome for tumor vaccination (2012) Cancer Res, 72 (5), pp. 1081-1091
  • Casey, D.G., Lysaght, J., James, T., Bateman, A., Melcher, A.A., Todryk, S.M., Heat shock protein derived from a non-autologous tumour can be used as an anti-tumour vaccine (2003) Immunology, 110 (1), pp. 105-111
  • Li, B., Simmons, A., Du, T., Lin, C., Moskalenko, M., Gonzalez-Edick, M., Allogeneic GM-CSF-secreting tumor cell immunotherapies generate potent anti-tumor responses comparable to autologous tumor cell immunotherapies (2009) Clin Immunol, 133 (2), pp. 184-197
  • Ning, N., Pan, Q., Zheng, F., Teitz-Tennenbaum, S., Egenti, M., Yet, J., Cancer stem cell vaccination confers significant antitumor immunity (2012) Cancer Res, 72 (7), pp. 1853-1864
  • Teitz-Tennenbaum, S., Wicha, M.S., Chang, A.E., Li, Q., Targeting cancer stem cells via dendritic-cell vaccination (2012) Oncoimmunology, 1 (8), pp. 1401-1403
  • Sauter, B., Albert, M.L., Francisco, L., Larsson, M., Somersan, S., Bhardwaj, N., Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells (2000) J Exp Med, 191 (3), pp. 423-434
  • Fry, T.J., Shand, J.L., Milliron, M., Tasian, S.K., Mackall, C.L., Antigen loading of DCs with irradiated apoptotic tumor cells induces improved anti-tumor immunity compared to other approaches (2009) Cancer Immunol Immunother, 58 (8), pp. 1257-1264
  • Deng, L., Liang, H., Xu, M., Yang, X., Burnette, B., Arina, A., STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors (2014) Immunity, 41 (5), pp. 843-852
  • Schnurr, M., Scholz, C., Rothenfusser, S., Galambos, P., Dauer, M., Robe, J., Apoptotic pancreatic tumor cells are superior to cell lysates in promoting cross-priming of cytotoxic T cells and activate NK and gammadelta T cells (2002) Cancer Res, 62 (8), pp. 2347-2352
  • Inzkirweli, N., Guckel, B., Sohn, C., Wallwiener, D., Bastert, G., Lindner, M., Antigen loading of dendritic cells with apoptotic tumor cell-preparations is superior to that using necrotic cells or tumor lysates (2007) Anticancer Res, 27 (4 B), pp. 2121-2129
  • Yoon, T.J., Kim, J.Y., Kim, H., Hong, C., Lee, H., Lee, C.K., Anti-tumor immunostimulatory effect of heat-killed tumor cells (2008) Exp Mol Med, 40 (1), pp. 130-144
  • Kawahara, M., Takaku, H., Intradermal immunization with combined baculovirus and tumor cell lysate induces effective antitumor immunity in mice (2013) Int J Oncol, 43 (6), pp. 2023-2030
  • Kroemer, G., Galluzzi, L., Kepp, O., Zitvogel, L., Immunogenic cell death in cancer therapy (2013) Annu Rev Immunol, 31, pp. 51-72
  • Krysko, D.V., Garg, A.D., Kaczmarek, A., Krysko, O., Agostinis, P., Vandenabeele, P., Immunogenic cell death and DAMPs in cancer therapy (2012) Nat Rev Cancer, 12 (12), pp. 860-875
  • Todryk, S., Melcher, A.A., Hardwick, N., Linardakis, E., Bateman, A., Colombo, M.P., Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake (1999) J Immunol, 163 (3), pp. 1398-1408
  • Calderwood, S.K., Theriault, J.R., Gong, J., How is the immune response affected by hyperthermia and heat shock proteins? (2005) Int J Hyperthermia, 21 (8), pp. 713-716
  • Asea, A., Kraeft, S.K., Kurt-Jones, E.A., Stevenson, M.A., Chen, L.B., Finberg, R.W., HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine (2000) Nat Med, 6 (4), pp. 435-442
  • Wang, X.Y., Yi, H., Yu, X., Zuo, D., Subjeck, J.R., Enhancing antigen cross-presentation and T-cell priming by complexing protein antigen to recombinant large heat-shock protein (2011) Methods Mol Biol, 787, pp. 277-287
  • Jiang, J., Xie, D., Zhang, W., Xiao, G., Wen, J., Fusion of Hsp70 to Mage-a1 enhances the potency of vaccine-specific immune responses (2013) J Transl Med, 11, p. 300
  • McNulty, S., Colaco, C.A., Blandford, L.E., Bailey, C.R., Baschieri, S., Todryk, S., Heat-shock proteins as dendritic cell-targeting vaccines-getting warmer (2013) Immunology, 139 (4), pp. 407-415
  • Enomoto, Y., Bharti, A., Khaleque, A.A., Song, B., Liu, C., Apostolopoulos, V., Enhanced immunogenicity of heat shock protein 70 peptide complexes from dendritic cell-tumor fusion cells (2006) J Immunol, 177 (9), pp. 5946-5955
  • Harshyne, L.A., Watkins, S.C., Gambotto, A., Barratt-Boyes, S.M., Dendritic cells acquire antigens from live cells for cross-presentation to CTL (2001) J Immunol, 166 (6), pp. 3717-3723
  • Toes, R.E., Blom, R.J., van der Voort, E., Offringa, R., Melief, C.J., Kast, W.M., Protective antitumor immunity induced by immunization with completely allogeneic tumor cells (1996) Cancer Res, 56 (16), pp. 3782-3787
  • Yasuda, T., Kamigaki, T., Kawasaki, K., Nakamura, T., Yamamoto, M., Kanemitsu, K., Superior anti-tumor protection and therapeutic efficacy of vaccination with allogeneic and semiallogeneic dendritic cell/tumor cell fusion hybrids for murine colon adenocarcinoma (2007) Cancer Immunol Immunother, 56 (7), pp. 1025-1036
  • Merrick, A., Diaz, R.M., O'Donnell, D., Selby, P., Vile, R., Melcher, A., Autologous versus allogeneic peptide-pulsed dendritic cells for anti-tumour vaccination: expression of allogeneic MHC supports activation of antigen specific T cells, but impairs early naive cytotoxic priming and anti-tumour therapy (2008) Cancer Immunol Immunother, 57 (6), pp. 897-906
  • Suzuki, T., Fukuhara, T., Tanaka, M., Nakamura, A., Akiyama, K., Sakakibara, T., Vaccination of dendritic cells loaded with interleukin-12-secreting cancer cells augments in vivo antitumor immunity: characteristics of syngeneic and allogeneic antigen-presenting cell cancer hybrid cells (2005) Clin Cancer Res, 11 (1), pp. 58-66
  • Herzog, G.I., Solgi, G., Wiegmann, D.S., Nienhaus, C., Schrezenmeier, H., Yildiz, T., Quality of tumor lysates used for pulsing dendritic cells is influenced by the method used to harvest adherent tumor cells (2011) BMC Res Notes, 4, p. 153
  • Olin, M.R., Andersen, B.M., Zellmer, D.M., Grogan, P.T., Popescu, F.E., Xiong, Z., Superior efficacy of tumor cell vaccines grown in physiologic oxygen (2010) Clin Cancer Res, 16 (19), pp. 4800-4808
  • Koido, S., Homma, S., Okamoto, M., Namiki, Y., Takakura, K., Uchiyama, K., Strategies to improve the immunogenicity of anticancer vaccines based on dendritic cell/malignant cell fusions (2013) Oncoimmunology, 2 (9)
  • Tanaka, Y., Koido, S., Ohana, M., Liu, C., Gong, J., Induction of impaired antitumor immunity by fusion of MHC class II-deficient dendritic cells with tumor cells (2005) J Immunol, 174 (3), pp. 1274-1280
  • Ishida, A., Tanaka, H., Hiura, T., Miura, S., Watanabe, S., Matsuyama, K., Generation of anti-tumour effector T cells from naive T cells by stimulation with dendritic/tumour fusion cells (2007) Scand J Immunol, 66 (5), pp. 546-554
  • Tamai, H., Watanabe, S., Zheng, R., Deguchi, K., Cohen, P.A., Koski, G.K., Effective treatment of spontaneous metastases derived from a poorly immunogenic murine mammary carcinoma by combined dendritic-tumor hybrid vaccination and adoptive transfer of sensitized T cells (2008) Clin Immunol, 127 (1), pp. 66-77
  • Guo, G.H., Chen, S.Z., Yu, J., Zhang, J., Luo, L.L., Xie, L.H., In vivo anti-tumor effect of hybrid vaccine of dendritic cells and esophageal carcinoma cells on esophageal carcinoma cell line 109 in mice with severe combined immune deficiency (2008) World J Gastroenterol, 14 (8), pp. 1167-1174
  • Yamamoto, M., Kamigaki, T., Yamashita, K., Hori, Y., Hasegawa, H., Kuroda, D., Enhancement of anti-tumor immunity by high levels of Th1 and Th17 with a combination of dendritic cell fusion hybrids and regulatory T cell depletion in pancreatic cancer (2009) Oncol Rep, 22 (2), pp. 337-343
  • Tan, C., Dannull, J., Nair, S.K., Ding, E., Tyler, D.S., Pruitt, S.K., Local secretion of IL-12 augments the therapeutic impact of dendritic cell-tumor cell fusion vaccination (2013) J Surg Res, 185 (2), pp. 904-911
  • Chen, X., Liu, Z., Huang, Y., Li, R., Zhang, H., Dong, S., Superior anti-tumor protection and therapeutic efficacy of vaccination with dendritic cell/tumor cell fusion hybrids for murine Lewis lung carcinoma (2014) Autoimmunity, 47 (1), pp. 46-56
  • Tanaka, Y., Koido, S., Chen, D., Gendler, S.J., Kufe, D., Gong, J., Vaccination with allogeneic dendritic cells fused to carcinoma cells induces antitumor immunity in MUC1 transgenic mice (2001) Clin Immunol, 101 (2), pp. 192-200
  • Chen, D., Xia, J., Tanaka, Y., Chen, H., Koido, S., Wernet, O., Immunotherapy of spontaneous mammary carcinoma with fusions of dendritic cells and mucin 1-positive carcinoma cells (2003) Immunology, 109 (2), pp. 300-307
  • Koido, S., Hara, E., Homma, S., Torii, A., Mitsunaga, M., Yanagisawa, S., Streptococcal preparation OK-432 promotes fusion efficiency and enhances induction of antigen-specific CTL by fusions of dendritic cells and colorectal cancer cells (2007) J Immunol, 178 (1), pp. 613-622
  • Caminschi, I., Shortman, K., Boosting antibody responses by targeting antigens to dendritic cells (2012) Trends Immunol, 33 (2), pp. 71-77
  • Hartung, E., Becker, M., Bachem, A., Reeg, N., Jakel, A., Hutloff, A., Induction of potent CD8 T cell cytotoxicity by specific targeting of antigen to cross-presenting dendritic cells in vivo via murine or human XCR1 (2015) J Immunol, 194 (3), pp. 1069-1079
  • Dhodapkar, M.V., Sznol, M., Zhao, B., Wang, D., Carvajal, R.D., Keohan, M.L., Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205 (2014) Sci Transl Med, 6 (232)
  • Mellman, I., Steinman, R.M., Dendritic cells: specialized and regulated antigen processing machines (2001) Cell, 106 (3), pp. 255-258
  • Van Brussel, I., Berneman, Z.N., Cools, N., Optimizing dendritic cell-based immunotherapy: tackling the complexity of different arms of the immune system (2012) Mediators Inflamm, 2012
  • Taraban, V.Y., Rowley, T.F., Al-Shamkhani, A., Cutting edge: a critical role for CD70 in CD8 T cell priming by CD40-licensed APCs (2004) J Immunol, 173 (11), pp. 6542-6546
  • Ohl, L., Mohaupt, M., Czeloth, N., Hintzen, G., Kiafard, Z., Zwirner, J., CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions (2004) Immunity, 21 (2), pp. 279-288
  • Jonuleit, H., Kuhn, U., Muller, G., Steinbrink, K., Paragnik, L., Schmitt, E., Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions (1997) Eur J Immunol, 27 (12), pp. 3135-3142
  • Zobywalski, A., Javorovic, M., Frankenberger, B., Pohla, H., Kremmer, E., Bigalke, I., Generation of clinical grade dendritic cells with capacity to produce biologically active IL-12p70 (2007) J Transl Med, 5, p. 18
  • Curtsinger, J.M., Johnson, C.M., Mescher, M.F., CD8 T cell clonal expansion and development of effector function require prolonged exposure to antigen, costimulation, and signal 3 cytokine (2003) J Immunol, 171 (10), pp. 5165-5171
  • Agarwal, P., Raghavan, A., Nandiwada, S.L., Curtsinger, J.M., Bohjanen, P.R., Mueller, D.L., Gene regulation and chromatin remodeling by IL-12 and type I IFN in programming for CD8 T cell effector function and memory (2009) J Immunol, 183 (3), pp. 1695-1704
  • Zapala, L., Wolny, R., Wachowska, M., Jakobisiak, M., Lasek, W., Synergistic antitumor effect of JAWSII dendritic cells and interleukin 12 in a melanoma mouse model (2013) Oncol Rep, 29 (3), pp. 1208-1214
  • Leonard, J.P., Sherman, M.L., Fisher, G.L., Buchanan, L.J., Larsen, G., Atkins, M.B., Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production (1997) Blood, 90 (7), pp. 2541-2548
  • Carreno, B.M., Becker-Hapak, M., Huang, A., Chan, M., Alyasiry, A., Lie, W.R., IL-12p70-producing patient DC vaccine elicits Tc1-polarized immunity (2013) J Clin Invest, 123 (8), pp. 3383-3394
  • Peterson, A.C., Harlin, H., Gajewski, T.F., Immunization with Melan-A peptide-pulsed peripheral blood mononuclear cells plus recombinant human interleukin-12 induces clinical activity and T-cell responses in advanced melanoma (2003) J Clin Oncol, 21 (12), pp. 2342-2348
  • Hamid, O., Solomon, J.C., Scotland, R., Garcia, M., Sian, S., Ye, W., Alum with interleukin-12 augments immunity to a melanoma peptide vaccine: correlation with time to relapse in patients with resected high-risk disease (2007) Clin Cancer Res, 13 (1), pp. 215-222
  • Inaba, K., Steinman, R.M., Pack, M.W., Aya, H., Inaba, M., Sudo, T., Identification of proliferating dendritic cell precursors in mouse blood (1992) J Exp Med, 175 (5), pp. 1157-1167
  • Dranoff, G., GM-CSF-secreting melanoma vaccines (2003) Oncogene, 22 (20), pp. 3188-3192
  • Ojima, T., Iwahashi, M., Nakamura, M., Matsuda, K., Naka, T., Nakamori, M., The boosting effect of co-transduction with cytokine genes on cancer vaccine therapy using genetically modified dendritic cells expressing tumor-associated antigen (2006) Int J Oncol, 28 (4), pp. 947-953
  • Narusawa, M., Inoue, H., Sakamoto, C., Matsumura, Y., Takahashi, A., Inoue, T., TLR7 ligand augments GM-CSF-initiated antitumor immunity through activation of plasmacytoid dendritic cells (2014) Cancer Immunol Res, 2 (6), pp. 568-580
  • Mach, N., Gillessen, S., Wilson, S.B., Sheehan, C., Mihm, M., Dranoff, G., Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand (2000) Cancer Res, 60 (12), pp. 3239-3246
  • Kawai, T., Akira, S., Signaling to NF-kappaB by toll-like receptors (2007) Trends Mol Med, 13 (11), pp. 460-469
  • Prchal, M., Pilz, A., Simma, O., Lingnau, K., von Gabain, A., Strobl, B., Type I interferons as mediators of immune adjuvants for T-and B cell-dependent acquired immunity (2009) Vaccine, 27, pp. G17-G20
  • Datta, S.K., Redecke, V., Prilliman, K.R., Takabayashi, K., Corr, M., Tallant, T., A subset of toll-like receptor ligands induces cross-presentation by bone marrow-derived dendritic cells (2003) J Immunol, 170 (8), pp. 4102-4110
  • Warger, T., Osterloh, P., Rechtsteiner, G., Fassbender, M., Heib, V., Schmid, B., Synergistic activation of dendritic cells by combined toll-like receptor ligation induces superior CTL responses in vivo (2006) Blood, 108 (2), pp. 544-550
  • Sidky, Y.A., Borden, E.C., Weeks, C.E., Reiter, M.J., Hatcher, J.F., Bryan, G.T., Inhibition of murine tumor growth by an interferon-inducing imidazoquinolinamine (1992) Cancer Res, 52 (13), pp. 3528-3533
  • Lee, J.R., Shin, J.H., Park, J.H., Song, S.U., Choi, G.S., Combined treatment with intratumoral injection of dendritic cells and topical application of imiquimod for murine melanoma (2007) Clin Exp Dermatol, 32 (5), pp. 541-549
  • Wilgenhof, S., Van Nuffel, A.M., Corthals, J., Heirman, C., Tuyaerts, S., Benteyn, D., Therapeutic vaccination with an autologous mRNA electroporated dendritic cell vaccine in patients with advanced melanoma (2011) J Immunother, 34 (5), pp. 448-456
  • Fujii, S., Liu, K., Smith, C., Bonito, A.J., Steinman, R.M., The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation (2004) J Exp Med, 199 (12), pp. 1607-1618
  • Taraban, V.Y., Martin, S., Attfield, K.E., Glennie, M.J., Elliott, T., Elewaut, D., Invariant NKT cells promote CD8+ cytotoxic T cell responses by inducing CD70 expression on dendritic cells (2008) J Immunol, 180 (7), pp. 4615-4620
  • Dang, Y., Wagner, W.M., Gad, E., Rastetter, L., Berger, C.M., Holt, G.E., Dendritic cell-activating vaccine adjuvants differ in the ability to elicit antitumor immunity due to an adjuvant-specific induction of immunosuppressive cells (2012) Clin Cancer Res, 18 (11), pp. 3122-3131
  • Prins, R.M., Soto, H., Konkankit, V., Odesa, S.K., Eskin, A., Yong, W.H., Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy (2011) Clin Cancer Res, 17 (6), pp. 1603-1615

Citas:

---------- APA ----------
Mac Keon, S., Ruiz, M.S., Gazzaniga, S. & Wainstok, R. (2015) . Dendritic cell-based vaccination in cancer: Therapeutic implications emerging from murine models. Frontiers in Immunology, 6(MAY).
http://dx.doi.org/10.3389/fimmu.2015.00243
---------- CHICAGO ----------
Mac Keon, S., Ruiz, M.S., Gazzaniga, S., Wainstok, R. "Dendritic cell-based vaccination in cancer: Therapeutic implications emerging from murine models" . Frontiers in Immunology 6, no. MAY (2015).
http://dx.doi.org/10.3389/fimmu.2015.00243
---------- MLA ----------
Mac Keon, S., Ruiz, M.S., Gazzaniga, S., Wainstok, R. "Dendritic cell-based vaccination in cancer: Therapeutic implications emerging from murine models" . Frontiers in Immunology, vol. 6, no. MAY, 2015.
http://dx.doi.org/10.3389/fimmu.2015.00243
---------- VANCOUVER ----------
Mac Keon, S., Ruiz, M.S., Gazzaniga, S., Wainstok, R. Dendritic cell-based vaccination in cancer: Therapeutic implications emerging from murine models. Front. Immunol. 2015;6(MAY).
http://dx.doi.org/10.3389/fimmu.2015.00243