Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The bacterial ribonuclease P or RNase P holoenzyme is usually composed of a catalytic RNA subunit, M1, and a cofactor protein, C5. This enzyme was first identified for its role in maturation of tRNAs by endonucleolytic cleavage of the pre-tRNA. The RNase P endonucleolytic activity is characterized by having structural but not sequence substrate requirements. This property led to development of EGS technology, which consists of utilizing a short antisense oligonucleotide that when forming a duplex with a target RNA induces its cleavage by RNase P. This technology is being explored for designing therapies that interfere with expression of genes, in the case of bacterial infections EGS technology could be applied to target essential, virulence, or antibiotic resistant genes. Acinetobacter baumannii is a problematic pathogen that is commonly resistant to multiple antibiotics, and EGS technology could be utilized to design alternative therapies. To better understand the A. baumannii RNase P we first identified and characterized the catalytic subunit. We identified a gene coding for an RNA species, M1Ab, with the expected features of the RNase P M1 subunit. A recombinant clone coding for M1Ab complemented the M1 thermosensitive mutant Escherichia coli BL21(DE3) T7A49, which upon transformation was able to grow at the non-permissive temperature. M1Ab showed in vitro catalytic activity in combination with the C5 protein cofactor from E. coli as well as with that from A. baumannii, which was identified, cloned and partially purified. M1Ab was also able to cleave a target mRNA in the presence of an EGS with efficiency comparable to that of the E. coli M1, suggesting that EGS technology could be a viable option for designing therapeutic alternatives to treat multiresistant A. baumannii infections. © 2018 Davies-Sala, Jani, Zorreguieta and Tolmasky.

Registro:

Documento: Artículo
Título:Identification of the acinetobacter baumannii ribonuclease p catalytic subunit: Cleavage of a target mRNA in the presence of an external guide sequence
Autor:Davies-Sala, C.; Jani, S.; Zorreguieta, A.; Tolmasky, M.E.
Filiación:Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, University of Buenos Aires, Buenos Aires, Argentina
Instituto de Investigaciones en Ingeniería Genética y Biología, Molecular Dr. Héctor N. Torres, CONICET, Buenos Aires, Argentina
Palabras clave:Acinetobacter; Antisense; EGS technology; ESKAPE; Ribozyme; RNase P
Año:2018
Volumen:9
Número:OCT
DOI: http://dx.doi.org/10.3389/fmicb.2018.02408
Título revista:Frontiers in Microbiology
Título revista abreviado:Front. Microbiol.
ISSN:1664302X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1664302X_v9_nOCT_p_DaviesSala

Referencias:

  • Alifano, P., Rivellini, F., Piscitelli, C., Arraiano, C.M., Bruni, C.B., Carlomagno, M.S., Ribonuclease E provides substrates for ribonuclease P-dependent processing of a polycistronic mRNA (1994) Genes Dev., 8, pp. 3021-3031
  • Altman, S., Ribonuclease P (2011) Philos. Trans. R. Soc. Lond. B Biol. Sci., 366, pp. 2936-2941
  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J. Mol. Biol., 215, pp. 403-410
  • Bienert, S., Waterhouse, A., De Beer, T.A., Tauriello, G., Studer, G., Bordoli, L., The SWISS-MODEL repository-new features and functionality (2017) Nucleic Acids Res., 45, pp. D313-D319
  • Bothwell, A.L., Garber, R.L., Altman, S., Nucleotide sequence and in vitro processing of a precursor molecule to Escherichia coli 4.5 S RNA (1976) J. Biol. Chem., 251, pp. 7709-7716
  • Chen, J.L., Pace, N.R., Identification of the universally conserved core of ribonuclease P RNA (1997) RNA, 3, pp. 557-560
  • Davies-Sala, C., Soler-Bistue, A., Bonomo, R.A., Zorreguieta, A., Tolmasky, M.E., External guide sequence technology: A path to development of novel antimicrobial therapeutics (2015) Ann. N. Y. Acad. Sci., 1354, pp. 98-110
  • Doi, Y., Bonomo, R.A., Hooper, D.C., Kaye, K.S., Johnson, J.R., Clancy, C.J., Gramnegative bacterial infections: Research priorities, accomplishments, and future directions of the antibacterial resistance leadership group (2017) Clin. Infect. Dis., 64, pp. S30-S35
  • Edgar, R.C., MUSCLE: Multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res., 32, pp. 1792-1797
  • Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Pfam: The protein families database (2014) Nucleic Acids Res., 42, pp. D222-D230
  • Forster, A.C., Altman, S., External guide sequences for an RNA enzyme (1990) Science, 249, pp. 783-786
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., Protein identification and analysis tools on the ExPASy server (2005) The Proteomics Protocols Handbook, pp. 571-607. , ed. J. M. Walker (New York, NY: Humana Press)
  • Gopalan, V., Vioque, A., Altman, S., RNase P: Variations and uses (2002) J. Biol. Chem., 277, pp. 6759-6762
  • Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., Altman, S., The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme (1983) Cell, 35, pp. 849-857
  • Guerrier-Takada, C., Li, Y., Altman, S., Artificial regulation of gene expression in Escherichia coli by RNase P (1995) Proc. Natl. Acad. Sci. U.S.A., 92, pp. 11115-11119
  • Guerrier-Takada, C., Salavati, R., Altman, S., Phenotypic conversion of drug-resistant bacteria to drug sensitivity (1997) Proc. Natl. Acad. Sci. U.S.A., 94, pp. 8468-8472
  • Haas, E.S., Brown, J.W., Evolutionary variation in bacterial RNase P RNAs (1998) Nucleic Acids Res., 26, pp. 4093-4099
  • Harding, C.M., Hennon, S.W., Feldman, M.F., Uncovering the mechanisms of Acinetobacter baumannii virulence (2018) Nat. Rev. Microbiol., 16, pp. 91-102
  • Hartmann, R.K., Heinrich, J., Schlegl, J., Schuster, H., Precursor of C4 antisense RNA of bacteriophages P1 and P7 is a substrate for RNase P of Escherichia coli (1995) Proc. Natl. Acad. Sci. U.S.A., 92, pp. 5822-5826
  • Jackson, A., Jani, S., Sala, C.D., Soler-Bistue, A.J., Zorreguieta, A., Tolmasky, M.E., Assessment of configurations and chemistries of bridged nucleic acids-containing oligomers as external guide sequences: A methodology for inhibition of expression of antibiotic resistance genes (2016) Biol. Methods Protoc., 1, p. bw001
  • Jani, S., Jackson, A., Davies-Sala, C., Chiem, K., Soler-Bistue, A., Zorreguieta, A., Assessment of external guide sequences' (EGS) efficiency as inducers of RNase P-mediated cleavage of mRNA target molecules (2018) Methods Mol. Biol., 1737, pp. 89-98
  • Jarrous, N., Roles of RNase P and its subunits (2017) Trends Genet., 33, pp. 594-603
  • Jarrous, N., Gopalan, V., Archaeal/eukaryal RNase P: Subunits, functions and RNA diversification (2010) Nucleic Acids Res., 38, pp. 7885-7894
  • Kazantsev, A.V., Krivenko, A.A., Harrington, D.J., Holbrook, S.R., Adams, P.D., Pace, N.R., Crystal structure of a bacterial ribonuclease P RNA (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 13392-13397
  • Klemm, B.P., Wu, N., Chen, Y., Liu, X., Kaitany, K., Howard, M.J., The diversity of Ribonuclease P: Protein and RNA catalysts with analogous biological functions (2016) Biomolecules, 6, p. 27
  • Ko, J.H., Izadjoo, M., Altman, S., Inhibition of expression of virulence genes of Yersinia pestis in Escherichia coli by external guide sequences and RNase P (2008) RNA, 14, pp. 1656-1662
  • Komine, Y., Kitabatake, M., Yokogawa, T., Nishikawa, K., Inokuchi, H., A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli (1994) Proc. Natl. Acad. Sci. U.S.A., 91, pp. 9223-9227
  • Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685
  • Lawrence, N.P., Richman, A., Amini, R., Altman, S., Heterologous enzyme function in Escherichia coli and the selection of genes encoding the catalytic RNA subunit of RNase P (1987) Proc. Natl. Acad. Sci. U.S.A., 84, pp. 6825-6829
  • Lundblad, E.W., Altman, S., Inhibition of gene expression by RNase P (2010) N. Biotechnol., 27, pp. 212-221
  • Marvin, M.C., Engelke, D.R., RNase P: Increased versatility through protein complexity? (2009) RNA Biol., 6, pp. 40-42
  • Mondragon, A., Structural studies of RNase P (2013) Annu. Rev. Biophys., 42, pp. 537-557
  • Ramirez, M.S., Nikolaidis, N., Tolmasky, M.E., Rise and dissemination of aminoglycoside resistance: The aac(6')-Ib paradigm (2013) Front. Microbiol., 4, p. 121
  • Ramirez, M.S., Tolmasky, M.E., Aminoglycoside modifying enzymes (2010) Drug Resist. Updat., 13, pp. 151-171
  • Reiner, R., Ben-Asouli, Y., Krilovetzky, I., Jarrous, N., A role for the catalytic ribonucleoprotein RNase P in RNA polymerase III transcription (2006) Genes Dev., 20, pp. 1621-1635
  • Reiter, N.J., Osterman, A., Torres-Larios, A., Swinger, K.K., Pan, T., Mondragon, A., Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA (2010) Nature, 468, pp. 784-789
  • Robertson, H.D., Altman, S., Smith, J.D., Purification and properties of a specific Escherichia coli ribonuclease which cleaves a tyrosine transfer ribonucleic acid presursor (1972) J. Biol. Chem., 247, pp. 5243-5251
  • Sala, C.D., Soler-Bistue, A.J., Korprapun, L., Zorreguieta, A., Tolmasky, M.E., Inhibition of cell division induced by external guide sequences (EGS Technology) targeting ftsZ (2012) PLoS One, 7
  • Sarno, R., Ha, H., Weinsetel, N., Tolmasky, M.E., Inhibition of aminoglycoside 6'-N-acetyltransferase type Ib-mediated amikacin resistance by antisense oligodeoxynucleotides (2003) Antimicrob. Agents Chemother., 47, pp. 3296-3304
  • Sawyer, A.J., Wesolowski, D., Gandotra, N., Stojadinovic, A., Izadjoo, M., Altman, S., A peptide-morpholino oligomer conjugate targeting Staphylococcus aureus gyrA mRNA improves healing in an infected mouse cutaneous wound model (2013) Int. J. Pharm., 453, pp. 651-655
  • Shen, N., Ko, J.H., Xiao, G., Wesolowski, D., Shan, G., Geller, B., Inactivation of expression of several genes in a variety of bacterial species by EGS technology (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 8163-8168
  • Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega (2011) Mol. Syst. Biol., 7, p. 539
  • Smith, M.G., Gianoulis, T.A., Pukatzki, S., Mekalanos, J.J., Ornston, L.N., Gerstein, M., New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis (2007) Genes Dev., 21, pp. 601-614
  • Soler Bistue, A.J., Ha, H., Sarno, R., Don, M., Zorreguieta, A., Tolmasky, M.E., External guide sequences targeting the aac(6')-Ib mRNA induce inhibition of amikacin resistance (2007) Antimicrob. Agents Chemother., 51, pp. 1918-1925
  • Soler Bistue, A.J., Martin, F.A., Vozza, N., Ha, H., Joaquin, J.C., Zorreguieta, A., Inhibition of aac(6')-Ib-mediated amikacin resistance by nuclease-resistant external guide sequences in bacteria (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 13230-13235
  • Studier, F.W., Rosenberg, A.H., Dunn, J.J., Dubendorff, J.W., Use of T7 RNA polymerase to direct expression of cloned genes (1990) Methods Enzymol., 185, pp. 60-89
  • Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D.L., Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis (2018) Lancet Infect. Dis., 18, pp. 318-327
  • Tacconelli, E., Magrini, N., (2018) Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics, , Geneva: World Health Organization
  • Taylor, R.G., Walker, D.C., McInnes, R.R., E. Coli host strains significantly affect the quality of small scale plasmid DNA preparations used for sequencing (1993) Nucleic Acids Res., 21, pp. 1677-1678
  • Torres-Larios, A., Swinger, K.K., Krasilnikov, A.S., Pan, T., Mondragon, A., Crystal structure of the RNA component of bacterial ribonuclease P (2005) Nature, 437, pp. 584-587
  • Wahlestedt, C., Salmi, P., Good, L., Kela, J., Johnsson, T., Hokfelt, T., Potent and nontoxic antisense oligonucleotides containing locked nucleic acids (2000) Proc. Natl. Acad. Sci. U.S.A., 97, pp. 5633-5638
  • Wong, D., Nielsen, T.B., Bonomo, R.A., Pantapalangkoor, P., Luna, B., Spellberg, B., Clinical and pathophysiological overview of Acinetobacter infections: A century of challenges (2017) Clin. Microbiol. Rev., 30, pp. 409-447
  • Yang, L., Altman, S., A noncoding RNA in Saccharomyces cerevisiae is an RNase P substrate (2007) RNA, 13, pp. 682-690
  • Yusuf, D., Marz, M., Stadler, P.F., Hofacker, I.L., Bcheck: A wrapper tool for detecting RNase P RNA genes (2010) BMC Genomics, 11, p. 432

Citas:

---------- APA ----------
Davies-Sala, C., Jani, S., Zorreguieta, A. & Tolmasky, M.E. (2018) . Identification of the acinetobacter baumannii ribonuclease p catalytic subunit: Cleavage of a target mRNA in the presence of an external guide sequence. Frontiers in Microbiology, 9(OCT).
http://dx.doi.org/10.3389/fmicb.2018.02408
---------- CHICAGO ----------
Davies-Sala, C., Jani, S., Zorreguieta, A., Tolmasky, M.E. "Identification of the acinetobacter baumannii ribonuclease p catalytic subunit: Cleavage of a target mRNA in the presence of an external guide sequence" . Frontiers in Microbiology 9, no. OCT (2018).
http://dx.doi.org/10.3389/fmicb.2018.02408
---------- MLA ----------
Davies-Sala, C., Jani, S., Zorreguieta, A., Tolmasky, M.E. "Identification of the acinetobacter baumannii ribonuclease p catalytic subunit: Cleavage of a target mRNA in the presence of an external guide sequence" . Frontiers in Microbiology, vol. 9, no. OCT, 2018.
http://dx.doi.org/10.3389/fmicb.2018.02408
---------- VANCOUVER ----------
Davies-Sala, C., Jani, S., Zorreguieta, A., Tolmasky, M.E. Identification of the acinetobacter baumannii ribonuclease p catalytic subunit: Cleavage of a target mRNA in the presence of an external guide sequence. Front. Microbiol. 2018;9(OCT).
http://dx.doi.org/10.3389/fmicb.2018.02408