Artículo

Rondón, L.; Urdániz, E.; Latini, C.; Payaslian, F.; Matteo, M.; Sosa, E.J.; Do Porto, D.F.; Turjanski, A.G.; Nemirovsky, S.; Hatfull, G.F.; Poggi, S.; Piuri, M. "Fluoromycobacteriophages can detect viable Mycobacterium tuberculosis and determine phenotypic rifampicin resistance in 3-5 days from sputum collection" (2018) Frontiers in Microbiology. 9(JUL)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The World Health Organization (WHO) estimates that 40% of tuberculosis (TB) cases are not diagnosed and treated correctly. Even though there are several diagnostic tests available in the market, rapid, easy, inexpensive detection, and drug susceptibility testing (DST) of Mycobacterium tuberculosis is still of critical importance specially in low and middle-income countries with high incidence of the disease. In this work, we have developed a microscopy-based methodology using the reporter mycobacteriophage mCherrybombΦ for detection of Mycobacterium spp. and phenotypic determination of rifampicin resistance within just days from sputum sample collection. Fluoromycobacteriophage methodology is compatible with regularly used protocols in clinical laboratories for TB diagnosis and paraformaldehyde fixation after infection reduces biohazard risks with sample analysis by fluorescence microscopy. We have also set up conditions for discrimination between M. tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM) strains by addition of p-nitrobenzoic acid (PNB) during the assay. Using clinical isolates of pre-XDR and XDR-TB strains from this study, we tested mCherrybombΦ for extended DST and we compared the antibiotic resistance profile with those predicted by whole genome sequencing. Our results emphasize the utility of a phenotypic test for M. tuberculosis extended DST. The many attributes of mCherrybombΦ suggests this could be a useful component of clinical microbiological laboratories for TB diagnosis and since only viable cells are detected this could be a useful tool for monitoring patient response to treatment. © 2018 Rondón, Urdániz, Latini, Payaslian, Matteo, Sosa, Do Porto, Turjanski, Nemirovsky, Hatfull, Poggi and Piuri.

Registro:

Documento: Artículo
Título:Fluoromycobacteriophages can detect viable Mycobacterium tuberculosis and determine phenotypic rifampicin resistance in 3-5 days from sputum collection
Autor:Rondón, L.; Urdániz, E.; Latini, C.; Payaslian, F.; Matteo, M.; Sosa, E.J.; Do Porto, D.F.; Turjanski, A.G.; Nemirovsky, S.; Hatfull, G.F.; Poggi, S.; Piuri, M.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Univ. de Buenos Aires, Inst. de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Instituto de Tisioneumonología Raúl F. Vaccarezza, Hospital de Infecciosas Dr. F. J. Muñiz, Buenos Aires, Argentina
Plataforma de Bioinformática Argentina, Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Department of Biological Sciences, Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA, United States
Palabras clave:Diagnosis; Drug susceptibility testing; Fluoromycobacteriophages; MCherrybombΦ; Tuberculosis; amikacin; ethambutol; isoniazid; kanamycin; ofloxacin; rifampicin; streptomycin; acid fast bacterium; adult; antibiotic resistance; antibiotic sensitivity; antibiotic therapy; Article; atypical Mycobacterium; bacterium culture; bioinformatics; clinical protocol; comparative study; diagnostic test accuracy study; DNA isolation; drug sensitivity; female; fluorescence microscopy; fluoromycobacteriophage; human; male; microbiological examination; middle income country; mycobacteriophage; Mycobacterium tuberculosis; next generation sequencing; patient monitoring; phenotype; predictive value; sensitivity and specificity; sputum analysis; transgender; treatment response; tuberculosis; whole genome sequencing
Año:2018
Volumen:9
Número:JUL
DOI: http://dx.doi.org/10.3389/fmicb.2018.01471
Título revista:Frontiers in Microbiology
Título revista abreviado:Front. Microbiol.
ISSN:1664302X
CAS:amikacin, 37517-28-5, 39831-55-5; ethambutol, 10054-05-4, 1070-11-7, 3577-94-4, 74-55-5; isoniazid, 54-85-3, 62229-51-0, 65979-32-0; kanamycin, 11025-66-4, 61230-38-4, 8063-07-8; ofloxacin, 82419-36-1; rifampicin, 13292-46-1; streptomycin, 57-92-1
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1664302X_v9_nJUL_p_Rondon

Referencias:

  • Ahmad, S., Mokaddas, E., Al-Mutairi, N., Eldeen, H.S., Mohammadi, S., Discordance across phenotypic and molecular methods for drug susceptibility testing of drug-resistant Mycobacterium tuberculosis isolates in a low TB incidence country (2016) PLoS One, 11
  • Albert, H., Heydenrych, A., Mole, R., Trollip, A., Blumberg, L., Evaluation of FASTPlaque TB-RIF, a rapid, manual test for the determination of rifampicin resistance from Mycobacterium tuberculosis cultures (2001) Int. J. Tuberc. Lung Dis, 5, pp. 906-911
  • Albert, H., Trollip, A., Seaman, T., Mole, R.J., Simple, phage-based (FASTPlaque) technology to determine rifampicin resistance of Mycobacterium tuberculosis directly from sputum (2004) Int. J. Tuberc. Lung Dis, 8, pp. 1114-1119
  • Albert, H., Trollip, A.P., Seaman, T., Abrahams, C., Mole, R.J., Jordaan, A., Evaluation of a rapid screening test for rifampicin resistance in re-treatment tuberculosis patients in the Eastern Cape (2007) S. Afr. Med. J, 97, pp. 858-863
  • Andrews, S., (2011) FastQC: A Quality Control Tool for High Throughput Sequence Data, , Cambridge: Babraham Institute
  • Anthony, R.M., Kolk, A.H., Kuijper, S., Klatser, P.R., Light emitting diodes for auramine o fluorescence microscopic screening of Mycobacterium tuberculosis (2006) Int. J. Tuberc. Lung Dis, 10, pp. 1060-1062
  • Banaiee, N., Bobadilla Del Valle, M., Bardarov, S., Jr., Riska, P.F., Small, P.M., Ponce De Leon, A., Luciferase reporter mycobacteriophages for detection, identification, and antibiotic susceptibility testing of Mycobacterium tuberculosis in Mexico (2001) J. Clin. Microbiol, 39, pp. 3883-3888
  • Bigi, M.M., Lopez, B., Blanco, F.C., Sasiain, M.D., De la Barrera, S., Marti, M.A., Single nucleotide polymorphisms may explain the contrasting phenotypes of two variants of a multidrug-resistant Mycobacterium tuberculosis strain (2017) Tuberculosis, 103, pp. 28-36
  • Blakemore, R., Story, E., Helb, D., Kop, J., Banada, P., Owens, M.R., Evaluation of the analytical performance of the Xpert MTB/RIF assay (2010) J. Clin. Microbiol, 48, pp. 2495-2501
  • Breslauer, D.N., Maamari, R.N., Switz, N.A., Lam, W.A., Fletcher, D.A., Mobile phone based clinical microscopy for global health applications (2009) PLoS One, 4
  • Brossier, F., Sougakoff, W., Aubry, A., Bernard, C., Cambau, E., Jarlier, V., Molecular detection methods of resistance to antituberculosis drugs in Mycobacterium tuberculosis (2017) Méd. Mal. Infect, 47, pp. 340-348
  • Canetti, G., Froman, S., Grosset, J., Hauduroy, P., Langerova, M., Mahler, H.T., Mycobacteria: laboratory methods for testing drug sensitivity and resistance (1963) Bull. World Health Organ, 29, pp. 565-578
  • Chang, K., Lu, W., Wang, J., Zhang, K., Jia, S., Li, F., Rapid and effective diagnosis of tuberculosis and rifampicin resistance with Xpert MTB/RIF assay: a meta-analysis (2012) J. Infect, 64, pp. 580-588
  • Cingolani, P., Platts, A., Wangle, L., Coon, M., Nguyen, T., Wang, L., A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3 (2012) Fly, 6, pp. 80-92
  • Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence (1998) Nature, 393, pp. 537-544
  • Cook, D.E., Andersen, E.C., VCF-kit: assorted utilities for the variant call format (2017) Bioinformatics, 33, pp. 1581-1582
  • da Silva, P.E., Von Groll, A., Martin, A., Palomino, J.C., Efflux as a mechanism for drug resistance in Mycobacterium tuberculosis (2011) FEMS Immunol. Med. Microbiol, 63, pp. 1-9
  • Datta, G., Nieto, L.M., Davidson, R.M., Mehaffy, C., Pederson, C., Dobos, K.M., Longitudinal whole genome analysis of pre and post drug treatment Mycobacterium tuberculosis isolates reveals progressive steps to drug resistance (2016) Tuberculosis, 98, pp. 50-55
  • Daza Bolaños, C.A., Lechinski De Paula, C., Trevizan Guerra, S., Junqueira Franco, M., García Ribeiro, M., Diagnosis of mycobacteria in bovine milk: an overview (2017) Rev. Inst. Med. Trop. São Paulo, 59, pp. 1-13
  • de Kantor, I.N., Barrera, L., Susceptibility tests to second line drugs and re-treatment of tuberculosis revisiting early experiences (2007) Medicina, 67, pp. 231-237
  • Dinnes, J., Deeks, J., Kunst, H., Gibson, A., Cummins, E., Waugh, N., Rapid diagnostic tests for the detection of tuberculosis infection (2007) Health Technol. Assess, 11, pp. 1-196
  • Dobbs, T.E., Webb, R.M., Chemotherapy of tuberculosis (2017) Microbiol. Spectr, 5, pp. 107-119
  • Dobner, P., Bretzel, G., Rusch-Gerdes, S., Feldmann, K., Rifai, M., Loscher, T., Geographic variation of the predictive values of genomic mutations associated with streptomycin resistance in Mycobacterium tuberculosis (1997) Mol. Cell. Probes, 11, pp. 123-126
  • Eldholm, V., Monteserin, J., Rieux, A., Lopez, B., Sobkowiak, B., Ritacco, V., Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain (2015) Nat. Commun, 6, p. 7119
  • Eltringham, I.J., Wilson, S.M., Drobniewski, F.A., Evaluation of a bacteriophage-based assay (phage amplified biologically assay) as a rapid screen for resistance to isoniazid, ethambutol, streptomycin, pyrazinamide, and ciprofloxacin among clinical isolates of Mycobacterium tuberculosis (1999) J. Clin. Microbiol, 37, pp. 3528-3532
  • Faksri, K., Hanchaina, R., Sangka, A., Namwat, W., Lulitanond, V., Development and application of single-tube multiplex real-time PCR for lineage classi fication of Mycobacterium tuberculosis based on large sequence polymorphism in Northeast Thailand (2015) Tuberculosis, 95, pp. 404-410
  • Fan, J., Zhang, H., Nguyen, D.T., Lyon, C.J., Mitchell, C.D., Zhao, Z., Rapid diagnosis of new and relapse tuberculosis by quantification of a circulating antigen in HIV-infected adults in the Greater Houston metropolitan area (2017) BMC Med, 15, p. 188
  • Ford, M.E., Stenstrom, C., Hendrix, R.W., Hatfull, G.F., Mycobacteriophage TM4: genome structure and gene expression (1998) Tuber. Lung Dis, 79, pp. 63-73
  • Galarza, M., Tarazona, D., Borda, V., Agapito, J.C., Guio, H., Evidence of clonal expansion in the genome of a multidrug-resistant Mycobacterium tuberculosis clinical isolate from Peru (2014) Genome Announc, 2, pp. 2013-2014
  • Garberi, J., Labrador, J., Garberi, F., Garberi, J.E., Peneipil, J., Garberi, M., Diagnosis of Mycobacterium tuberculosis using molecular biology technology (2011) Asian Pac. J. Trop. Biomed, 1, pp. 89-93
  • Glaziou, P., Falzon, D., Floyd, K., Raviglione, M., Global epidemiology of tuberculosis (2013) Semin. Respir. Crit. Care Med, 34, pp. 3-16
  • Gurbanova, E., Mehdiyev, R., Blondal, K., Tahirli, R., Mirzayev, F., Hillemann, D., Mitigation of discordant rifampicin-susceptibility results obtained by Xpert Mycobacterium tuberculosis/rifampicin and Mycobacterium growth indicator tube (2017) Microb. Drug Resist, 23, pp. 1045-1052
  • Hatfull, G.F., Mycobacteriophages: genes and genomes (2010) Annu. Rev. Microbiol, 64, pp. 331-356
  • Hatfull, G.F., The secret lives of mycobacteriophages (2012) Adv. Virus Res, 82, pp. 179-288
  • Hazbón, M.H., Recent advances in molecular methods for early diagnosis of tuberculosis and drug-resistant tuberculosis (2004) Biomedica, 24, pp. 149-162
  • Hemvani, N., Patidar, V., Chitnis, D.S., A simple and economical in-house phage technique for the rapid detection of rifampin, isoniazid, ethambutol, streptomycin, and ciprofloxacin drug resistance in Mycobacterium tuberculosis, directly on decontaminated sputum samples (2012) Int. J. Infect. Dis, 16, pp. e332-e336
  • Huerta-cepas, J., Serra, F., Bork, P., ETE 3, reconstruction, analysis, and visualization of phylogenomic data (2016) Mol. Biol. Evol, 33, pp. 1635-1638
  • Jacobs, W.R., Jr., Barletta, R.G., Udani, R., Chan, J., Kalkut, G., Sosne, G., Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages (1993) Science, 260, pp. 819-822
  • Jain, P., Hartman, T.E., Eisenberg, N., O'Donnell, M.R., Kriakov, J., Govender, K., f(2) GFP10, a high-intensity fluorophage, enables detection and rapid drug susceptibility testing of Mycobacterium tuberculosis directly from sputum samples (2012) J. Clin. Microbiol, 50, pp. 1362-1369
  • Javid, B., Sorrentino, F., Toosky, M., Zheng, W., Pinkham, J.T., Jain, N., Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance (2014) Proc. Natl. Acad. Sci. U.S.A, 111, pp. 1132-1137
  • Kiraz, N., Et, L., Akgun, Y., Kasifoglu, N., Kiremitci, A., Rapid detection of Mycobacterium tuberculosis from sputum specimens using the FAST Plaque TB test (2007) Int. J. Tuberc. Lung Dis, 11, pp. 904-908
  • Lee, A.S., Lim, I.H., Tang, L.L., Telenti, A., Wong, S.Y., Contribution of kasA analysis to detection of isoniazid-resistant Mycobacterium tuberculosis in Singapore (1999) Antimicrob. Agents Chemother, 43, pp. 2087-2089
  • Li, H., Durbin, R., Fast and accurate long-read alignment with Burrows-Wheeler transform (2010) Bioinformatics, 26, pp. 589-595
  • López-Hernández, Y., Patiño-Rodríguez, O., García-Orta, S.T., Pinos-Rodríguez, J.M., Mass Spectrometry applied to the identification of M. tuberculosis and biomarkers discovery (2016) J. Appl. Microbiol, 121, pp. 1485-1497
  • Louw, G.E., Warren, R.M., van Helden, P.D., Victor, T.C., Rv2629 191A/C nucleotide change is not associated with rifampicin resistance in Mycobacterium tuberculosis (2009) Clin. Chem. Lab. Med, 47, pp. 500-501
  • Machado, D., Perdigão, J., Portugal, I., Pieroni, M., Silva, P.A., Couto, I., Activity differentially modulates the levels of isoniazid and rifampicin resistance among multidrug resistant and monoresistant Mycobacterium tuberculosis strains (2018) Antibiotics, 7, p. 18
  • Madico, G., Mpeirwe, M., White, L., Vinhas, S., Orr, B., Orikiriza, P., Detection and quantification of Mycobacterium tuberculosis in the sputum of culture-negative HIV-infected pulmonary tuberculosis suspects: a proof-of-concept study (2016) PLoS One, 11
  • Madison, B., Robinson-Dunn, B., George, I., Gross, W., Lipman, H., Metchock, B., Multicenter evaluation of ethambutol susceptibility testing of Mycobacterium tuberculosis by agar proportion and radiometric methods (2002) J. Clin. Microbiol, 40, pp. 3976-3979
  • Marais, B.J., Brittle, W., Painczyk, K., Hesseling, A.C., Beyers, N., Wasserman, E., Use of light-emitting diode fluorescence microscopy to detect acid-fast bacilli in sputum (2008) Clin. Infect. Dis, 47, pp. 203-207
  • Martin, A., Fissette, K., Varaine, F., Portaels, F., Palomino, J.C., Thin layer agar compared to BACTEC MGIT 960 for early detection of Mycobacterium tuberculosis (2009) J. Microbiol. Methods, 78, pp. 107-108
  • Mayer, O., Jain, P., Weisbrod, T.R., Biro, D., Ho, L., Jacobs-Sera, D., Fluorescent reporter DS6A mycobacteriophages reveal unique variations in infectibility and phage production in mycobacteria (2016) J. Bacteriol, 198, pp. 3220-3232
  • Mboowa, G., Namaganda, C., Ssengooba, W., Rifampicin resistance mutations in the 81 bp RRDR of rpoB gene in Mycobacterium tuberculosis clinical isolates using Xpert® MTB/RIF in Kampala, Uganda: a retrospective study (2014) BMC Infect. Dis, 14, p. 481
  • Mckenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data (2010) Genome Res, 20, pp. 1297-1303
  • Mokaddas, E., Ahmad, S., Eldeen, H.S., Al-Mutairi, N., Discordance between Xpert MTB/RIF assay and bactec MGIT 960 culture system for detection of rifampin-resistant Mycobacterium tuberculosis isolates in a country with a low tuberculosis (TB) incidence (2015) J. Clin. Microbiol, 53, pp. 1351-1354
  • Mole, R., Trollip, A., Abrahams, C., Bosman, M., Albert, H., Improved contamination control for a rapid phage-based rifampicin resistance test for Mycobacterium tuberculosis (2007) J. Med. Microbiol, 56, pp. 1334-1339
  • Naveen, G., Peerapur, B.V., Comparison of the Lowenstein-Jensen medium, the middlebrook 7H10 medium and MB/BACT for the isolation of Mycobacterium tuberculosis (MTB) from clinical specimens (2012) J. Clin. Diagn. Res, 6, pp. 1704-1709
  • Ocheretina, O., Escuyer, V.E., Mabou, M.M., Royal-Mardi, G., Collins, S., Vilbrun, S.C., Correlation between genotypic and phenotypic testing for resistance to rifampin in Mycobacterium tuberculosis clinical isolates in Haiti: investigation of cases with discrepant susceptibility results (2014) PLoS One, 9
  • O'Donnell, M.R., Pym, A., Jain, P., Munsamy, V., Wolf, A., Karim, F., A novel reporter phage to detect tuberculosis and rifampin resistance in a high-HIV-burden population (2015) J. Clin. Microbiol, 53, pp. 2188-2194
  • Okamoto, S., Tamaru, A., Nakajima, C., Nishimura, K., Tanaka, Y., Tokuyama, S., Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria (2007) Mol. Microbiol, 63, pp. 1096-1106
  • Piuri, M., Jacobs, W.R., Jr., Hatfull, G.F., Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis (2009) PLoS One, 4
  • Radusky, L., Defelipe, L.A., Lanzarotti, E., Luque, J., Barril, X., Marti, M.A., TuberQ: a Mycobacterium tuberculosis protein druggability database (2014) Database, 2014
  • Rahman, A., Sahrin, M., Afrin, S., Earley, K., Ahmed, S., Raman, S.M., Comparison of Xpert MTB/RIF assay and GenoType MTBDR plus DNA probes for detection of mutations associated with rifampicin resistance in Mycobacterium tuberculosis (2016) PLoS One, 11
  • Riska, P.F., Jacobs, W.R., Jr., Bloom, B.R., McKitrick, J., Chan, J., Specific identification of Mycobacterium tuberculosis with the luciferase reporter mycobacteriophage: use of p-nitro-alpha-acetylamino-beta-hydroxy propiophenone (1997) J. Clin. Microbiol, 35, pp. 3225-3231
  • Rondón, L., Piuri, M., Jacobs, W.R., Jr., De Waard, J., Hatfull, G.F., Takiff, H.E., Evaluation of fluoromycobacteriophages for detecting drug resistance in Mycobacterium tuberculosis (2011) J. Clin. Microbiol, 49, pp. 1838-1842
  • Rubin, E.J., TB diagnosis from the Dark Ages to fluorescence (2018) Nat. Microbiol, 3, pp. 268-269
  • Rufai, S.B., Kumar, P., Singh, A., Prajapati, S., Balooni, V., Singh, S., of Xpert MTB/RIF with line probe assay for detection of rifampin-monoresistant Mycobacterium tuberculosis (2014) J. Clin. Microbiol, 52, pp. 1846-1852
  • Sales, M.L., Fonseca Junior, A.A., Orzil, L., Alencar, A.P., Silva, M.R., Issa, M.A., Validation of a real-time PCR assay for the molecular identification of Mycobacterium tuberculosis (2015) Braz. J. Microbiol, 45, pp. 1363-1369
  • Salzer, H.J., Wassilew, N., Kohler, N., Olaru, I.D., Gunther, G., Herzmann, C., Personalized medicine for chronic respiratory infectious diseases: tuberculosis, nontuberculous mycobacterial pulmonary diseases, and chronic pulmonary aspergillosis (2016) Respiration, 92, pp. 199-214
  • Sandgren, A., Strong, M., Muthukrishnan, P., Weiner, B.K., Church, G.M., Murray, M.B., Tuberculosis drug resistance mutation database (2009) PLoS Med, 6
  • Schmieder, R., Edwards, R., Quality control and preprocessing of metagenomic datasets (2011) Bioinformatics, 27, pp. 863-864
  • Shakoor, S., Ahsan, T., Jabeen, K., Raza, M., Hasan, R., Use of p-nitrobenzoic acid in 7H10 agar for identification of Mycobacterium tuberculosis complex: a field study (2010) Int. J. Tuberc. Lung Dis, 14, pp. 1644-1646
  • Sharma, B., Pal, N., Malhotra, B., Vyas, L., Evaluation of a rapid differentiation test for Mycobacterium tuberculosis from other mycobacteria by selective inhibition with p-nitrobenzoic acid using MGIT 960 (2010) J. Lab. Phys, 2, pp. 89-92
  • Sreevatsan, S., Stockbauer, K.E., Pan, X., Kreiswirth, B.N., Moghazeh, S.L., Jacobs, W.R., Jr., Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations (1997) Antimicrob. Agents Chemother, 41, pp. 1677-1681
  • Sulis, G., Centis, R., Sotgiu, G., D'Ambrosio, L., Pontali, E., Spanevello, A., Recent developments in the diagnosis and management of tuberculosis (2016) NPJ Prim. Care Respir. Med, 26, p. 16078
  • Teo, J., Jureen, R., Chiang, D., Chan, D., Lin, R., Comparison of two nucleic acid amplification assays, the Xpert MTB/RIF assay and the amplified Mycobacterium tuberculosis direct assay, for detection of Mycobacterium tuberculosis in respiratory and nonrespiratory specimens (2011) J. Clin. Microbiol, 49, pp. 3659-3662
  • (2018) The R Project for Statistical Computing, , https://www.r-project.org/
  • Urdániz, E., Rondón, L., Martí, M.A., Hatfull, G.F., Piuri, M., Rapid whole-cell assay of antitubercular drugs using second-generation fluoromycobacteriophages (2016) Antimicrob. Agents Chemother, 60, pp. 3253-3256
  • van Soolingen, D., Hermans, P.W., de Haas, P.E., Soll, D.R., van Embden, J.D., Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis (1991) J. Clin. Microbiol, 29, pp. 2578-2586
  • Venables, W.N., Ripley, B.D., (2002) Modern Applied Statistics with S, , New York, NY: Springer
  • Wassilew, N., Hoffmann, H., Andrejak, C., Lange, C., Pulmonary disease caused by non-tuberculous mycobacteria (2016) Respiration, 91, pp. 386-402
  • Watterson, S.A., Wilson, S.M., Yates, M.D., Drobniewski, F.A., Comparison of three molecular assays for rapid detection of rifampin resistance in Mycobacterium tuberculosis (1998) J. Clin. Microbiol, 36, pp. 1969-1973
  • Weldu, Y., Asrat, D., Woldeamanuel, Y., Hailesilasie, A., Comparative evaluation of a two-reagent cold stain method with Ziehl-Nelseen method for pulmonary tuberculosis diagnosis (2013) BMC Res. Notes, 6, p. 323
  • Rapid Implementation of the Xpert MTB/RIF Diagnostic Test, p. 2011. , http://apps.who.int/iris/bitstream/10665/44593/1/9789241501569_eng.pdf
  • (2016) The Shorter MDR-TB Regimen, , http://www.who.int/tb/Short_MDR_regimen_factsheet.pdf
  • (2017) TDR 2016 Annual Report: Health Research Impact that Lasts, , http://apps.who.int/iris/bitstream/10665/255775/1/9789241512664-eng.pdf
  • Wilson, S.M., al-Suwaidi, Z., McNerney, R., Porter, J., Drobniewski, F., Evaluation of a new rapid bacteriophage-based method for the drug susceptibility testing of Mycobacterium tuberculosis (1997) Nat. Med, 3, pp. 465-468
  • (2012) Tuberculosis Laboratory Biosafety Manual. Tuberc Lab Biosaf Man, , http://www.ncbi.nlm.nih.gov/pubmed/24404640
  • Yu, X., Gu, Y., Jiang, G., Ma, Y., Zhao, L., Sun, Z., Evaluation of a high-intensity green fluorescent protein fluorophage method for drug-resistance diagnosis in tuberculosis for isoniazid, rifampin, and streptomycin (2016) Front. Microbiol, 7, p. 922
  • Zhu, C., Cui, Z., Zheng, R., Yang, H., Jin, R., Qin, L., A multi-center study to evaluate the performance of phage amplified biologically assay for detecting TB in sputum in the pulmonary TB patients (2011) PLoS One, 6

Citas:

---------- APA ----------
Rondón, L., Urdániz, E., Latini, C., Payaslian, F., Matteo, M., Sosa, E.J., Do Porto, D.F.,..., Piuri, M. (2018) . Fluoromycobacteriophages can detect viable Mycobacterium tuberculosis and determine phenotypic rifampicin resistance in 3-5 days from sputum collection. Frontiers in Microbiology, 9(JUL).
http://dx.doi.org/10.3389/fmicb.2018.01471
---------- CHICAGO ----------
Rondón, L., Urdániz, E., Latini, C., Payaslian, F., Matteo, M., Sosa, E.J., et al. "Fluoromycobacteriophages can detect viable Mycobacterium tuberculosis and determine phenotypic rifampicin resistance in 3-5 days from sputum collection" . Frontiers in Microbiology 9, no. JUL (2018).
http://dx.doi.org/10.3389/fmicb.2018.01471
---------- MLA ----------
Rondón, L., Urdániz, E., Latini, C., Payaslian, F., Matteo, M., Sosa, E.J., et al. "Fluoromycobacteriophages can detect viable Mycobacterium tuberculosis and determine phenotypic rifampicin resistance in 3-5 days from sputum collection" . Frontiers in Microbiology, vol. 9, no. JUL, 2018.
http://dx.doi.org/10.3389/fmicb.2018.01471
---------- VANCOUVER ----------
Rondón, L., Urdániz, E., Latini, C., Payaslian, F., Matteo, M., Sosa, E.J., et al. Fluoromycobacteriophages can detect viable Mycobacterium tuberculosis and determine phenotypic rifampicin resistance in 3-5 days from sputum collection. Front. Microbiol. 2018;9(JUL).
http://dx.doi.org/10.3389/fmicb.2018.01471