Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Archaea, bacteria, and eukarya secrete membrane microvesicles (MVs) as a mechanism for intercellular communication. We report the isolation and characterization of MVs from the probiotic strain Lactobacillus casei BL23. MVs were characterized using analytical high performance techniques, DLS, AFM and TEM. Similar to what has been described for other Gram-positive bacteria, MVs were on the nanometric size range (30-50 nm). MVs carried cytoplasmic components such as DNA, RNA and proteins. Using a proteomic approach (LC-MS), we identified a total of 103 proteins; 13 exclusively present in the MVs. The MVs content included cell envelope associated and secretory proteins, heat and cold shock proteins, several metabolic enzymes, proteases, structural components of the ribosome, membrane transporters, cell wall-associated hydrolases and phage related proteins. In particular, we identified proteins described as mediators of Lactobacillus' probiotic effects such as p40, p75 and the product of LCABL_31160, annotated as an adhesion protein. The presence of these proteins suggests a role for the MVs in the bacteria-gastrointestinal cells interface. The expression and further encapsulation of proteins into MVs of GRAS (Generally Recognized as Safe) bacteria could represent a scientific novelty, with applications in food, nutraceuticals and clinical therapies. © 2017 Domínguez Rubio, Martínez, Martínez Casillas, Coluccio Leskow, Piuri and Pérez.

Registro:

Documento: Artículo
Título:Lactobacillus casei BL23 produces microvesicles carrying proteins that have been associated with its probiotic effect
Autor:Rubio, A.P.D.; Martínez, J.H.; Casillas, D.C.M.; Leskow, F.C.; Piuri, M.; Pérez, O.E.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Departamento de Física de la Materia Condensada, Centro Nacional de Energía Atómica, Buenos Aires, Argentina
Departamento de Ciencias Básicas, Universidad Nacional de Luján, Buenos Aires, Argentina
Departamento de Desarrollo Productivo y Tecnológico, Universidad Nacional de Lanús, Buenos Aires, Argentina
Palabras clave:CFSE; Lactobacillus casei BL23; Microvesicles; Probiotics; Proteomics; Vesicle size distribution; adhesin; bacterial enzyme; bacterial protein; capsid protein; cold shock protein; DNA; heat shock protein; probiotic agent; proteinase; RNA; secretory protein; structural protein; viral protein; Article; atomic force microscopy; bacterial strain; bacterium culture; confocal laser scanning microscopy; dispersity; functional food; Lactobacillus casei; Lactobacillus casei BL23; light scattering; membrane microparticle; membrane potential; nonhuman; particle size; polyacrylamide gel electrophoresis; protein function; proteomics; surface charge; transmission electron microscopy
Año:2017
Volumen:8
Número:SEP
DOI: http://dx.doi.org/10.3389/fmicb.2017.01783
Título revista:Frontiers in Microbiology
Título revista abreviado:Front. Microbiol.
ISSN:1664302X
CAS:DNA, 9007-49-2; proteinase, 9001-92-7; RNA, 63231-63-0
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1664302X_v8_nSEP_p_Rubio

Referencias:

  • Abuin, G.C., Nonjola, P., Franceschini, E.A., Izraelevitch, F.H., Mathe, M.K., Corti, H.R., Characterization of an anionic-exchange membranes for direct methanol alkaline fuel cells (2010) Int. J. Hydrogen Energy, 35, pp. 5849-5854
  • Al-Nedawi, K., Mian, M.F., Hossain, N., Karimi, K., Mao, Y.-K.K., Forsythe, P., Gut commensal microvesicles reproduce parent bacterial signals to host immune and enteric nervous systems (2014) FASEB J., 29, pp. 684-695
  • Archambaud, C., Nahori, M.-A., Soubigou, G., Bécavin, C., Laval, L., Lechat, P., Impact of lactobacilli on orally acquired listeriosis (2012) Proc. Natl. Acad. Sci. U.S.A., 109, pp. 16684-16689
  • Atwal, S., Giengkam, S., VanNieuwenhze, M., Salje, J., Live imaging of the genetically intractable obligate intracellular bacteria Orientia tsutsugamushi using a panel of fluorescent dyes (2016) J. Microbiol. Methods, 130, pp. 169-176
  • Bäuerl, C., Pérez-Martínez, G., Yan, F., Polk, D.B., Monedero, V., Functional analysis of the p40 and p75 proteins from lactobacillus casei BL23 (2011) J. Mol. Microbiol. Biotechnol., 19, pp. 231-241
  • Benton, D., Williams, C., Brown, A., Impact of consuming a milk drink containing a probiotic on mood and cognition (2007) Eur. J. Clin. Nutr., 61, pp. 355-361
  • Bermúdez-Humarán, L.G., Kharrat, P., Chatel, J.-M., Langella, P., Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines (2011) Microb. Cell Fact., 10, p. S4
  • Brown, L., Kessler, A., Cabezas-Sanchez, P., Luque-Garcia, J.L., Casadevall, A., Extracellular vesicles produced by the Gram-positive bacterium Bacillus subtilis are disrupted by the lipopeptide surfactin (2014) Mol. Microbiol., 93, pp. 183-198
  • Camino, N.A., Pérez, O.E., Pilosof, A.M.R., Molecular and functional modification of hydroxypropylmethylcellulose by high-intensity ultrasound (2009) Food Hydrocoll., 23, pp. 1089-1095
  • Chernyshev, V.S., Rachamadugu, R., Tseng, Y.H., Belnap, D.M., Jia, Y., Branch, K.J., Size and shape characterization of hydrated and desiccated exosomes (2015) Anal. Bioanal. Chem., 407, pp. 3285-3301
  • Deatheragea, B.L., Cooksona, B.T., Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life (2012) Infect. Immun., 80, pp. 1948-1957
  • Dieterle, M.E., Fina Martin, J., Durán, R., Nemirovsky, S.I., Sanchez Rivas, C., Bowman, C., Characterization of prophages containing "evolved" Dit/Tal modules in the genome of Lactobacillus casei BL23 (2016) Appl. Microbiol. Biotechnol., 100, pp. 9201-9215
  • Dunne, C., O'Mahony, L., Murphy, L., Thornton, G., Morrissey, D., O'Halloran, S., In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings (2001) Am. J. Clin. Nutrition, 73, pp. 386S-392S
  • Durante, I.M., Cámara, M., de los, M., Buscaglia, C.A., A Novel Trypanosoma cruzi Protein Associated to the Flagellar Pocket of Replicative Stages and Involved in Parasite Growth (2015) PLOS ONE, 10
  • Ferguson, L.R., Nutrigenomics approaches to functional foods (2009) J. Am. Diet. Assoc., 109, pp. 452-458
  • Fleming, D., Kesey, J., Rumbaugh, K., Dissanaike, S., Comparing the Survivability of Lactobacillus Species in Various Probiotic Delivery Vehicles (2016) J. Parenter. Enteral. Nutr, , Epub ahead of print]
  • Foligne, B., Nutten, S., Grangette, C., Dennin, V., Goudercourt, D., Poiret, S., Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria (2007) World J. Gastroenterol., 13, pp. 236-243
  • Foster, B., Balassa, T., Benen, T., Dominovic, M., Elmadjian, G., Florova, V., Extracellular vesicles in blood, milk and body fluids of the female and male urogenital tract and with special regard to reproduction (2016) Crit. Rev. Clin. Lab. Sci, 8363, pp. 1-47
  • György, B., Módos, K., Pállinger, É., Pálóczi, K., Pásztói, M., Misják, P., Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters (2011) Blood, 117, pp. 39-49
  • He, X., Zeng, Q., Puthiyakunnon, S., Zeng, Z., Yang, W., Qiu, J., Lactobacillus rhamnosus GG supernatant enhance neonatal resistance to systemic Escherichia coli K1 infection by accelerating development of intestinal defense (2017) Sci. Rep., 7, p. 43305
  • Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic (2014) Nat. Rev. Gastroenterol. Hepatol., 11, pp. 506-514
  • (2011) Inform White Paper Dynamic Light Scattering, pp. 1-6. , Malvern: Malvern Instruments Ltd
  • Islam, S.U., Clinical uses of probiotics (2016) Medicine, 95
  • Jankovic, I., Sybesma, W., Phothirath, P., Ananta, E., Mercenier, A., Application of probiotics in food products-challenges and new approaches (2010) Curr. Opin. Biotechnol., 21, pp. 175-181
  • Kim, D.-K., Lee, J., Kim, S.R., Choi, D.-S., Yoon, Y.J., Kim, J.H., EVpedia: a community web portal for extracellular vesicles research (2015) Bioinformatics, 31, pp. 933-939
  • Kim, Y., Edwards, N., Fenselau, C., Extracellular vesicle proteomes reflect developmental phases of Bacillus subtilis (2016) Clin. Proteomics, 13, p. 6
  • Koeppen, K., Hampton, T.H., Jarek, M., Scharfe, M., Gerber, S.A., Mielcarz, D.W., A novel mechanism of host-pathogen interaction through sRNA in bacterial outer membrane vesicles (2016) PLOS Pathog., 12
  • Kuczkowska, K., Kleiveland, C.R., Minic, R., Moen, L.F., Øverland, L., Tjåland, R., Immunogenic properties of Lactobacillus plantarum producing surface-displayed Mycobacterium tuberculosis antigens (2017) Appl. Environ. Microbiol., 83
  • Lee, E.Y., Choi, D.Y., Kim, D.K., Kim, J.W., Park, J.O., Kim, S., Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles (2009) Proteomics, 9, pp. 5425-5436
  • Lee, Y.K., Salminen, S., Handbook of Probiotics and Prebiotics (2008), Hoboken, NJ: John Wiley & Sons, Inc; Lenoir, M., Del Carmen, S., Cortes-Perez, N.G., Lozano-Ojalvo, D., Muñoz-Provencio, D., Chain, F., Lactobacillus casei BL23 regulates Treg and Th17 T-cell populations and reduces DMH-associated colorectal cancer (2016) J. Gastroenterol., 51, pp. 862-873
  • Li, M., Lee, K., Hsu, M., Nau, G., Mylonakis, E., Ramratnam, B., Lactobacillus -derived extracellular vesicles enhance host immune responses against vancomycin-resistant enterococci (2017) BMC Microbiol., 17, p. 66
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the Folin phenol reagent (1951) J. Biol. Chem., 193, pp. 265-275
  • Maas, S.L.N., De Vrij, J., Van Der Vlist, E.J., Geragousian, B., Van Bloois, L., Mastrobattista, E., Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics (2015) J. Control. Release, 200, pp. 87-96
  • Marimpietri, D., Petretto, A., Raffaghello, L., Pezzolo, A., Gagliani, C., Tacchetti, C., Proteome profiling of neuroblastoma-derived exosomes reveal the expression of proteins potentially involved in tumor progression (2013) PLOS ONE, 8
  • Marzesco, A.-M., Janich, P., Wilsch-Bräuninger, M., Dubreuil, V., Langenfeld, K., Corbeil, D., Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells (2005) J. Cell Sci., 118, pp. 2849-2858
  • Mayer, E.A., Tillisch, K., Gupta, A., Gut/brain axis and the microbiota (2015) J. Clin. Invest., 125, pp. 926-938
  • Mazé, A., Boël, G., Zúñiga, M., Bourand, A., Loux, V., Yebra, M.J., Complete genome sequence of the probiotic Lactobacillus casei strain BL23 (2010) J. Bacteriol., 192, pp. 2647-2648
  • Mirzaei, M.K., Maurice, C.F., Ménage à trois in the human gut: interactions between host, bacteria and phages (2017) Nat. Rev. Microbiol., 15, pp. 397-408
  • Munoz-Provencio, D., Monedero, V., Shotgun phage display of Lactobacillus casei BL23 against collagen and fibronectin (2011) J. Microbiol. Biotechnol., 21, pp. 197-203
  • Muñoz-Provencio, D., Pérez-Martínez, G., Monedero, V., Characterization of a fibronectin-binding protein from Lactobacillus casei BL23 (2010) J. Appl. Microbiol., 108, pp. 1050-1059
  • Nguyen, D.B., Ly, T.B., Wesseling, M.C., Hittinger, M., Torge, A., Devitt, A., Characterization of microvesicles released from human red blood cells (2016) Cell Physiol. Biochem., 38, pp. 1085-1099
  • O'Mahony, L., Mccarthy, J., Kelly, P., Hurley, G., Luo, F., Chen, K., Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles (2005) Gastroenterology, 128, pp. 541-551
  • O'Toole, P.W., Marchesi, J.R., Hill, C., Na, Y.C., Kim, H.S., Next-generation probiotics: the spectrum from probiotics to live biotherapeutics (2017) Nat. Microbiol., 2, p. 17057
  • Parot, P., Dufrêne, Y.F., Hinterdorfer, P., Le Grimellec, C., Navajas, D., Pellequer, J.-L., Past, present and future of atomic force microscopy in life sciences and medicine (2007) J. Mol. Recogn., 20, pp. 418-431
  • Pathirana, R.D., Kaparakis-Liaskos, M., Bacterial membrane vesicles: biogenesis, immune regulation and pathogenesis (2016) Cell Microbiol., 18, pp. 1518-1524
  • Pérez, O.E., David-Birman, T., Kesselman, E., Levi-Tal, S., Lesmes, U., Milk protein-vitamin interactions: formation of beta-lactoglobulin/folic acid nano-complexes and their impact on in vitro gastro-duodenal proteolysis (2014) Food Hydrocoll., 38, pp. 40-47
  • Pospichalova, V., Svoboda, J., Dave, Z., Kotrbova, A., Kaiser, K., Klemova, D., Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer (2015) J. Extracell. Vesicles, 4, p. 25530
  • Prados-Rosales, R., Carreño, L.J., Batista-Gonzalez, A., Baena, A., Venkataswamy, M.M., Xu, J., Mycobacterial membrane vesicles administered systemically in mice induce a protective immune response to surface compartments of Mycobacterium tuberculosis (2014) mBio, 5
  • Prescott, S.L., Björkstén, B., Björjkstén, B., Probiotics for the prevention or treatment of allergic diseases (2007) J. Allergy Clin. Immunol., 120, pp. 255-262
  • Quah, B.J.C., Parish, C.R., The use of carboxyfluorescein diacetate succinimidyl ester (CFSE) to monitor lymphocyte proliferation (2010) J. Vis. Exp., 44, p. 2259
  • Rincón, D., Vaquero, J., Hernando, A., Galindo, E., Ripoll, C., Puerto, M., Oral probiotic VSL#3 attenuates the circulatory disturbances of patients with cirrhosis and ascites (2014) Liver Int., 34, pp. 1504-1512
  • Ringot-Destrez, B., Kalach, N., Mihalache, A., Gosset, P., Michalski, J.-C., Léonard, R., How do they stick together? (2017) Bacterial adhesins implicated in the binding of bacteria to the human gastrointestinal mucins. Biochem. Soc. Trans., 45, pp. 389-399
  • Rivera, J., Cordero, R.J.B., Nakouzi, A.S., Frases, S., Nicola, A., Casadevall, A., Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 19002-19007
  • Rochat, T., Bermúdez-Humarán, L., Gratadoux, J.-J., Fourage, C., Hoebler, C., Corthier, G., Anti-inflammatory effects of Lactobacillus casei BL23 producing or not a manganese-dependant catalase on DSS-induced colitis in mice (2007) Microb. Cell Fact., 6, p. 22
  • Ross, R.P., Desmond, C., Fitzgerald, G.F., Stanton, C., Overcoming the technological hurdles in the development of probiotic foods (2005) J. Appl. Microbiol., 98, pp. 1410-1417
  • Smokvina, T., Wels, M., Polka, J., Chervaux, C., Brisse, S., Boekhorst, J., Lactobacillus paracasei comparative genomics: towards species pan-genome definition and exploitation of diversity (2013) PLOS ONE, 8
  • Sokolova, V., Ludwig, A.-K., Hornung, S., Rotan, O., Horn, P.A., Epple, M., Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy (2011) Colloids Surf. B Biointerfaces, 87, pp. 146-150
  • Stanton, C., Gardiner, G., Meehan, H., Collins, K., Fitzgerald, G., Lynch, P.B., Market potential for probiotics (2001) Am. J. Clin. Nutr., 73 (2), pp. 476S-483S
  • Théry, C., Ostrowski, M., Segura, E., Membrane vesicles as conveyors of immune responses (2009) Nat. Rev. Immunol., 9, pp. 581-593
  • Trelis, M., Galiano, A., Bolado, A., Toledo, R., Marcilla, A., Bernal, D., Subcutaneous injection of exosomes reduces symptom severity and mortality induced by Echinostoma caproni infection in BALB/c mice (2016) Int. J. Parasitol., 46, pp. 799-808
  • Tzipilevich, E., Habusha, M., Ben-Yehuda, S., Acquisition of phage sensitivity by bacteria through exchange of phage receptors (2016) Cell, 168, pp. 186.e-199.e
  • Vajen, T., Mause, S.F., Koenen, R.R., Microvesicles from platelets: novel drivers of vascular inflammation (2015) Thromb. Haemost., 114, pp. 228-236
  • Van Baarlen, P., Wells, J.M., Kleerebezem, M., Regulation of intestinal homeostasis and immunity with probiotic lactobacilli (2013) Trends Immunol., 34, pp. 208-215
  • van der Pol, E., Böing, A.N., Harrison, P., Sturk, A., Nieuwland, R., Classification, Functions, and Clinical Relevance of Extracellular Vesicles (2012) Pharmacol. Rev., 64, pp. 676-705
  • Wada, H., Masumoto-kubo, C., Gholipour, Y., Nonami, H., Tanaka, F., Rice chalky ring formation caused by temporal reduction in starch biosynthesis during osmotic adjustment under foehn-induced dry wind (2014) PLOS ONE, 9
  • Wang, M., Gao, Z., Zhang, Y., Pan, L., Lactic acid bacteria as mucosal delivery vehicles: a realistic therapeutic option (2016) Appl. Microbiol. Biotechnol., 100, pp. 5691-5701
  • Watterlot, L., Rochat, T., Sokol, H., Cherbuy, C., Bouloufa, I., Lefèvre, F., Intragastric administration of a superoxide dismutase-producing recombinant Lactobacillus casei BL23 strain attenuates DSS colitis in mice (2010) Int. J. Food Microbiol., 144, pp. 35-41
  • Witwer, K.W., Buzás, E.I., Bemis, L.T., Bora, A., Lässer, C., Lötvall, J., Standardization of sample collection, isolation and analysis methods in extracellular vesicle research (2013) J. Extracell. Vesicles, 2, pp. 1-25
  • Yan, F., Cao, H., Cover, T.L., Washington, M.K., Shi, Y., Liu, L., Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism (2011) J. Clin. Investig., 121, pp. 2242-2253
  • Yáñez-Mó, M., Siljander, P.R.-M.R.M., Andreu, Z., Zavec, A.B., Borràs, F.E., Buzas, E.I., Biological properties of extracellular vesicles and their physiological functions (2015) J. Extracell. Vesicles, 4, p. 27066
  • Yoda, K., Miyazawa, K., Hosoda, M., Hiramatsu, M., Yan, F., He, F., Lactobacillus GG-fermented milk prevents DSS-induced colitis and regulates intestinal epithelial homeostasis through activation of epidermal growth factor receptor (2014) Eur. J. Nutr., 53, pp. 105-115
  • Yuana, Y., Oosterkamp, T.H., Bahatyrova, S., Ashcroft, B., Garcia Rodriguez, P., Bertina, R.M., Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles (2010) J. Thromb. Haemost., 8, pp. 315-323

Citas:

---------- APA ----------
Rubio, A.P.D., Martínez, J.H., Casillas, D.C.M., Leskow, F.C., Piuri, M. & Pérez, O.E. (2017) . Lactobacillus casei BL23 produces microvesicles carrying proteins that have been associated with its probiotic effect. Frontiers in Microbiology, 8(SEP).
http://dx.doi.org/10.3389/fmicb.2017.01783
---------- CHICAGO ----------
Rubio, A.P.D., Martínez, J.H., Casillas, D.C.M., Leskow, F.C., Piuri, M., Pérez, O.E. "Lactobacillus casei BL23 produces microvesicles carrying proteins that have been associated with its probiotic effect" . Frontiers in Microbiology 8, no. SEP (2017).
http://dx.doi.org/10.3389/fmicb.2017.01783
---------- MLA ----------
Rubio, A.P.D., Martínez, J.H., Casillas, D.C.M., Leskow, F.C., Piuri, M., Pérez, O.E. "Lactobacillus casei BL23 produces microvesicles carrying proteins that have been associated with its probiotic effect" . Frontiers in Microbiology, vol. 8, no. SEP, 2017.
http://dx.doi.org/10.3389/fmicb.2017.01783
---------- VANCOUVER ----------
Rubio, A.P.D., Martínez, J.H., Casillas, D.C.M., Leskow, F.C., Piuri, M., Pérez, O.E. Lactobacillus casei BL23 produces microvesicles carrying proteins that have been associated with its probiotic effect. Front. Microbiol. 2017;8(SEP).
http://dx.doi.org/10.3389/fmicb.2017.01783