Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cushing's disease (CD) is an endocrine disorder originated by a corticotroph tumor. It is linked with high mortality and morbidity due to chronic hypercortisolism. Treatment goals are to control cortisol excess and achieve long-term remission, therefore, reducing both complications and patient's mortality. First-line of treatment for CD is pituitary's surgery. However, 30% of patients who undergo surgery experience recurrence in long-term follow-up. Persistent or recurrent CD demands second-line treatments, such as pituitary radiotherapy, adrenal surgery, and/or pharmacological therapy. The latter plays a key role in cortisol excess control. Its targets are inhibition of adrenocorticotropic hormone (ACTH) production, inhibition of adrenal steroidogenesis, or antagonism of cortisol action at its peripheral receptor. Retinoic acid (RA) is a metabolic product of vitamin A (retinol) and has been studied for its antiproliferative effects on corticotroph tumor cells. It has been shown that this drug regulates the expression of pro-opiomelanocortin (POMC), ACTH secretion, and tumor growth in corticotroph tumor mouse cell lines and in the nude mice experimental model, via inhibition of POMC transcription. It has been shown to result in tumor reduction, normalization of cortisol levels and clinical improvement in dogs treated with RA for 6 months. The orphan nuclear receptor COUP-TFI is expressed in normal corticotroph cells, but not in corticotroph tumoral cells, and inhibits RA pathways. A first clinical human study demonstrated clinical and biochemical effectiveness in 5/7 patients treated with RA for a period of up to 12 months. In a recent second clinical trial, 25% of 16 patients achieved eucortisolemia, and all achieved a cortisol reduction after 6-to 12-month treatment. The goal of this review is to discuss in the context of the available and future pharmacological treatments of CD, RA mechanisms of action on corticotroph tumor cells, and future perspectives, focusing on potential clinical implementation. © 2018 Fuertes, Tkatch, Rosmino, Nieto, Guitelman and Arzt.

Registro:

Documento: Artículo
Título:New insights in cushing disease treatment with focus on a derivative of vitamin A
Autor:Fuertes, M.; Tkatch, J.; Rosmino, J.; Nieto, L.; Guitelman, M.A.; Arzt, E.
Filiación:Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
División Endocrinología, Hospital General de Agudos 'Carlos G. Durand', Buenos Aires, Argentina
Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Adrenocorticotropic hormone; Chicken ovoalbumin upstream promoter transcription factor; Cushing disease; Pharmacological treatment; Retinoic acid; aminoglutethimide; chimeric antibody; corticotropin; dopamine receptor; doxazosin; epidermal growth factor receptor; etomidate; hydrocortisone; ketoconazole; levoketoconazole; melanocortin 2 receptor; metyrapone; microRNA; mifepristone; mitotane; monoclonal antibody; osilodrostat; peroxisome proliferator activated receptor gamma; proopiomelanocortin; rapamycin; retinoic acid; retinol derivative; roscovitine; somatostatin receptor; temozolomide; trilostane; ACTH secreting cell; antiproliferative activity; clinical effectiveness; clinical outcome; clinical trial (topic); Cushing disease; hormone action; hormone release; human; molecularly targeted therapy; nonhuman; radiotherapy dosage; Review; steroidogenesis; transsphenoidal surgery; tumor growth
Año:2018
Volumen:9
Número:MAY
DOI: http://dx.doi.org/10.3389/fendo.2018.00262
Título revista:Frontiers in Endocrinology
Título revista abreviado:Front. Endocrinol.
ISSN:16642392
CAS:aminoglutethimide, 125-84-8; corticotropin, 11136-52-0, 9002-60-2, 9061-27-2; doxazosin, 74191-85-8; epidermal growth factor receptor, 79079-06-4; etomidate, 15301-65-2, 33125-97-2, 51919-80-3; hydrocortisone, 50-23-7; ketoconazole, 65277-42-1; levoketoconazole, 142128-57-2; metyrapone, 22752-91-6, 2405-72-3, 54-36-4, 908-35-0; mifepristone, 84371-65-3; mitotane, 53-19-0; osilodrostat, 928134-65-0, 928134-31-0, 1315449-72-9; proopiomelanocortin, 66796-54-1; rapamycin, 53123-88-9; retinoic acid, 302-79-4; roscovitine, 186692-46-6; temozolomide, 85622-93-1; trilostane, 13647-35-3
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16642392_v9_nMAY_p_Fuertes

Referencias:

  • Cannavo, S., Messina, E., Albani, A., Ferrau, F., Barresi, V., Priola, S., Clinical management of critically ill patients with Cushing's disease due to ACTH-secreting pituitary macroadenomas: effectiveness of presurgical treatment with pasireotide (2016) Endocrine, 52 (3), pp. 481-487
  • Lamos, E.M., Munir, K.M., Cushing disease: highlighting the importance of early diagnosis for both de novo and recurrent disease in light of evolving treatment patterns (2014) Endocr Pract, 20 (9), pp. 945-955
  • Simeoli, C., Auriemma, R.S., Tortora, F., De Leo, M., Iacuaniello, D., Cozzolino, A., The treatment with pasireotide in Cushing's disease: effects of long-term treatment on tumor mass in the experience of a single center (2015) Endocrine, 50 (3), pp. 725-740
  • Newell-Price, J., Bertagna, X., Grossman, A.B., Nieman, L.K., Cushing's syndrome (2006) Lancet, 367 (9522), pp. 1605-1617
  • Steffensen, C., Bak, A.M., Rubeck, K.Z., Jorgensen, J.O., Epidemiology of Cushing's syndrome (2010) Neuroendocrinology, 92, pp. 1-5
  • Feelders, R.A., Hofland, L.J., Medical treatment of Cushing's disease (2013) J Clin Endocrinol Metab, 98 (2), pp. 425-438
  • Fleseriu, M., Petersenn, S., New avenues in the medical treatment of Cushing's disease: corticotroph tumor targeted therapy (2013) J Neurooncol, 114 (1), pp. 1-11
  • Becker, G., Kocher, M., Kortmann, R.D., Paulsen, F., Jeremic, B., Muller, R.P., Radiation therapy in the multimodal treatment approach of pituitary adenoma (2002) Strahlenther Onkol, 178 (4), pp. 173-186
  • Tritos, N.A., Biller, B.M., Advances in medical therapies for Cushing's syndrome (2012) Discov Med, 13 (69), pp. 171-179
  • van der Pas, R., de Herder, W.W., Hofland, L.J., Feelders, R.A., New developments in the medical treatment of Cushing's syndrome (2012) Endocr Relat Cancer, 19 (6), pp. R205-R223
  • Langlois, F., McCartney, S., Fleseriu, M., Recent progress in the medical therapy of pituitary tumors (2017) Endocrinol Metab (Seoul), 32 (2), pp. 162-170
  • Colao, A., Petersenn, S., Newell-Price, J., Findling, J.W., Gu, F., Maldonado, M., A 12-month phase 3 study of pasireotide in Cushing's disease (2012) N Engl J Med, 366 (10), pp. 914-924
  • Petersenn, S., Salgado, L.R., Schopohl, J., Portocarrero-Ortiz, L., Arnaldi, G., Lacroix, A., Long-term treatment of Cushing's disease with pasireotide: 5-year results from an open-label extension study of a phase III trial (2017) Endocrine, 57 (1), pp. 156-165
  • Lacroix, A., Gu, F., Gallardo, W., Pivonello, R., Yu, Y., Witek, P., Efficacy and safety of once-monthly pasireotide in Cushing's disease: a 12 month clinical trial (2018) Lancet Diabetes Endocrinol, 6 (1), pp. 17-26
  • Godbout, A., Manavela, M., Danilowicz, K., Beauregard, H., Bruno, O.D., Lacroix, A., Cabergoline monotherapy in the long-term treatment of Cushing's disease (2010) Eur J Endocrinol, 163 (5), pp. 709-716
  • Burman, P., Eden-Engstrom, B., Ekman, B., Karlsson, F.A., Schwarcz, E., Wahlberg, J., Limited value of cabergoline in Cushing's disease: a prospective study of a 6-week treatment in 20 patients (2016) Eur J Endocrinol, 174 (1), pp. 17-24
  • Ferriere, A., Cortet, C., Chanson, P., Delemer, B., Caron, P., Chabre, O., Cabergoline for Cushing's disease: a large retrospective multicenter study (2017) Eur J Endocrinol, 176 (3), pp. 305-314
  • Pecori Giraldi, F., Scaroni, C., Arvat, E., Martin, M., Giordano, R., Albiger, N., Effect of protracted treatment with rosiglitazone, a PPARgamma agonist, in patients with Cushing's disease (2006) Clin Endocrinol (Oxf), 64 (2), pp. 219-224
  • Castinetti, F., Guignat, L., Giraud, P., Muller, M., Kamenicky, P., Drui, D., Ketoconazole in Cushing's disease: is it worth a try? (2014) J Clin Endocrinol Metab, 99 (5), pp. 1623-1630
  • Daniel, E., Aylwin, S., Mustafa, O., Ball, S., Munir, A., Boelaert, K., Effectiveness of metyrapone in treating Cushing's syndrome: a retrospective multicenter study in 195 patients (2015) J Clin Endocrinol Metab, 100 (11), pp. 4146-4154
  • Baudry, C., Coste, J., Bou Khalil, R., Silvera, S., Guignat, L., Guibourdenche, J., Efficiency and tolerance of mitotane in Cushing's disease in 76 patients from a single center (2012) Eur J Endocrinol, 167 (4), pp. 473-481
  • Fleseriu, M., Biller, B.M., Findling, J.W., Molitch, M.E., Schteingart, D.E., Gross, C., Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing's syndrome (2012) J Clin Endocrinol Metab, 97 (6), pp. 2039-2049
  • Bertagna, X., Pivonello, R., Fleseriu, M., Zhang, Y., Robinson, P., Taylor, A., LCI699, a potent 11beta-hydroxylase inhibitor, normalizes urinary cortisol in patients with Cushing's disease: results from a multicenter, proof-of-concept study (2014) J Clin Endocrinol Metab, 99 (4), pp. 1375-1383
  • Pecori Giraldi, F., Ambrogio, A.G., Andrioli, M., Sanguin, F., Karamouzis, I., Corsello, S.M., Potential role for retinoic acid in patients with Cushing's disease (2012) J Clin Endocrinol Metab, 97 (10), pp. 3577-3583
  • Vilar, L., Albuquerque, J.L., Lyra, R., Trovao Diniz, E., Rangel Filho, F., Gadelha, P., The role of isotretinoin therapy for Cushing's disease: results of a prospective study (2016) Int J Endocrinol, 2016
  • Boscaro, M., Ludlam, W.H., Atkinson, B., Glusman, J.E., Petersenn, S., Reincke, M., Treatment of pituitary-dependent Cushing's disease with the multireceptor ligand somatostatin analog pasireotide (SOM230): a multicenter, phase II trial (2009) J Clin Endocrinol Metab, 94 (1), pp. 115-122
  • Stalla, G.K., Brockmeier, S.J., Renner, U., Newton, C., Buchfelder, M., Stalla, J., Octreotide exerts different effects in vivo and in vitro in Cushing's disease (1994) Eur J Endocrinol, 130 (2), pp. 125-131
  • Cuevas-Ramos, D., Lim, D.S.T., Fleseriu, M., Update on medical treatment for Cushing's disease (2016) Clin Diabetes Endocrinol, 2, p. 16
  • de Bruin, C., Feelders, R.A., Waaijers, A.M., van Koetsveld, P.M., Sprij-Mooij, D.M., Lamberts, S.W., Differential regulation of human dopamine D2 and somatostatin receptor subtype expression by glucocorticoids in vitro (2009) J Mol Endocrinol, 42 (1), pp. 47-56
  • Feelders, R.A., de Bruin, C., Pereira, A.M., Romijn, J.A., Netea-Maier, R.T., Hermus, A.R., Pasireotide alone or with cabergoline and ketoconazole in Cushing's disease (2010) N Engl J Med, 362 (19), pp. 1846-1848
  • Ceccato, F., Scaroni, C., Boscaro, M., Clinical use of pasireotide for Cushing's disease in adults (2015) Ther Clin Risk Manag, 11, pp. 425-434
  • Fleseriu, M., Petersenn, S., Medical management of Cushing's disease: what is the future? (2012) Pituitary, 15 (3), pp. 330-341
  • Colao, A., De Block, C., Gaztambide, M.S., Kumar, S., Seufert, J., Casanueva, F.F., Managing hyperglycemia in patients with Cushing's disease treated with pasireotide: medical expert recommendations (2014) Pituitary, 17 (2), pp. 180-186
  • Pivonello, R., Ferone, D., de Herder, W.W., Kros, J.M., De Caro, M.L., Arvigo, M., Dopamine receptor expression and function in corticotroph pituitary tumors (2004) J Clin Endocrinol Metab, 89 (5), pp. 2452-2462
  • Barbot, M., Albiger, N., Ceccato, F., Zilio, M., Frigo, A.C., Denaro, L., Combination therapy for Cushing's disease: effectiveness of two schedules of treatment: should we start with cabergoline or ketoconazole? (2014) Pituitary, 17 (2), pp. 109-117
  • Heaney, A.P., Fernando, M., Yong, W.H., Melmed, S., Functional PPAR-gamma receptor is a novel therapeutic target for ACTH-secreting pituitary adenomas (2002) Nat Med, 8 (11), pp. 1281-1287
  • Stone, J.C., Furuya-Kanamori, L., Barendregt, J.J., Doi, S.A., Was there really any evidence that rosiglitazone increased the risk of myocardial infarction or death from cardiovascular causes? (2015) Pharmacoepidemiol Drug Saf, 24 (3), pp. 223-227
  • Daniel, E., Newell-Price, J.D., Therapy of endocrine disease: steroidogenesis enzyme inhibitors in Cushing's syndrome (2015) Eur J Endocrinol, 172 (6), pp. R263-R280
  • Pivonello, R., De Leo, M., Cozzolino, A., Colao, A., The treatment of Cushing's disease (2015) Endocr Rev, 36 (4), pp. 385-486
  • Fleseriu, M., Castinetti, F., Updates on the role of adrenal steroidogenesis inhibitors in Cushing's syndrome: a focus on novel therapies (2016) Pituitary, 19 (6), pp. 643-653
  • Rigel, D.F., Fu, F., Beil, M., Hu, C.W., Liang, G., Jeng, A.Y., Pharmacodynamic and pharmacokinetic characterization of the aldosterone synthase inhibitor FAD286 in two rodent models of hyperaldosteronism: comparison with the 11beta-hydroxylase inhibitor metyrapone (2010) J Pharmacol Exp Ther, 334 (1), pp. 232-243
  • Nieman, L.K., Biller, B.M., Findling, J.W., Murad, M.H., Newell-Price, J., Savage, M.O., Treatment of Cushing's syndrome: an endocrine society clinical practice guideline (2015) J Clin Endocrinol Metab, 100 (8), pp. 2807-2831
  • Preda, V.A., Sen, J., Karavitaki, N., Grossman, A.B., Etomidate in the management of hypercortisolaemia in Cushing's syndrome: a review (2012) Eur J Endocrinol, 167 (2), pp. 137-143
  • Bertagna, X., Guignat, L., Groussin, L., Bertherat, J., Cushing's disease (2009) Best Pract Res Clin Endocrinol Metab, 23 (5), pp. 607-623
  • Feelders, R.A., Hofland, L.J., de Herder, W.W., Medical treatment of Cushing's syndrome: adrenal-blocking drugs and ketaconazole (2010) Neuroendocrinology, 92, pp. 111-115
  • Igaz, P., Tombol, Z., Szabo, P.M., Liko, I., Racz, K., Steroid biosynthesis inhibitors in the therapy of hypercortisolism: theory and practice (2008) Curr Med Chem, 15 (26), pp. 2734-2747
  • Bourgeois, S., Pfahl, M., Baulieu, E.E., DNA binding properties of glucocorticosteroid receptors bound to the steroid antagonist RU-486 (1984) EMBO J, 3 (4), pp. 751-755
  • Johanssen, S., Allolio, B., Mifepristone (RU 486) in Cushing's syndrome (2007) Eur J Endocrinol, 157 (5), pp. 561-569
  • Fleseriu, M., Pivonello, R., Young, J., Hamrahian, A.H., Molitch, M.E., Shimizu, C., Osilodrostat, a potent oral 11beta-hydroxylase inhibitor: 22-week, prospective, phase II study in Cushing's disease (2016) Pituitary, 19 (2), pp. 138-148
  • Guelho, D., Grossman, A.B., Emerging drugs for Cushing's disease (2015) Expert Opin Emerg Drugs, 20 (3), pp. 463-478
  • Salvatori, R., DelConte, A., Geer, E.B., Koziol, T., Jorkasky, D., (2015) An open-label study to assess the safety and efficacy of levoketoconazole (COR-003) in the treatment of endogenous Cushing's syndrome, , Endocrine Society's 97th Annual Meeting and Expo. San Diego
  • Liu, N.A., Jiang, H., Ben-Shlomo, A., Wawrowsky, K., Fan, X.M., Lin, S., Targeting zebrafish and murine pituitary corticotroph tumors with a cyclin-dependent kinase (CDK) inhibitor (2011) Proc Natl Acad Sci U S A, 108 (20), pp. 8414-8419
  • Liu, N.A., Araki, T., Cuevas-Ramos, D., Hong, J., Ben-Shlomo, A., Tone, Y., Cyclin E-mediated human proopiomelanocortin regulation as a therapeutic target for Cushing disease (2015) J Clin Endocrinol Metab, 100 (7), pp. 2557-2564
  • Fukuoka, H., Cooper, O., Ben-Shlomo, A., Mamelak, A., Ren, S.G., Bruyette, D., EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas (2011) J Clin Invest, 121 (12), pp. 4712-4721
  • Ben-Shlomo, A., Cooper, O., Role of tyrosine kinase inhibitors in the treatment of pituitary tumours: from bench to bedside (2017) Curr Opin Endocrinol Diabetes Obes, 24 (4), pp. 301-305
  • Halem, H.A., Ufret, M., Jewett, I., Mattei, A., Bastille, A., Beech, J., (2016) In vivo suppression of corticosterone in rodent models of Cushing's disease with a selective, peptide MC2 receptor antagonist, , Endocrine Society's 98th Annual Meeting and Expo. Boston
  • Culler, M.D., Somatostatin-dopamine chimeras: a novel approach to treatment of neuroendocrine tumors (2011) Horm Metab Res, 43 (12), pp. 854-857
  • Ibanez-Costa, A., Lopez-Sanchez, L.M., Gahete, M.D., Rivero-Cortes, E., Vazquez-Borrego, M.C., Galvez, M.A., BIM-23A760 influences key functional endpoints in pituitary adenomas and normal pituitaries: molecular mechanisms underlying the differential response in adenomas (2017) Sci Rep, 7, p. 42002
  • Bode, H., Seiz, M., Lammert, A., Brockmann, M.A., Back, W., Hammes, H.P., SOM230 (pasireotide) and temozolomide achieve sustained control of tumour progression and ACTH secretion in pituitary carcinoma with widespread metastases (2010) Exp Clin Endocrinol Diabetes, 118 (10), pp. 760-763
  • Dillard, T.H., Gultekin, S.H., Delashaw, J.B., Jr., Yedinak, C.G., Neuwelt, E.A., Fleseriu, M., Temozolomide for corticotroph pituitary adenomas refractory to standard therapy (2011) Pituitary, 14 (1), pp. 80-91
  • Liu, J.K., Patel, J., Eloy, J.A., The role of temozolomide in the treatment of aggressive pituitary tumors (2015) J Clin Neurosci, 22 (6), pp. 923-929
  • Fernando, M.A., Heaney, A.P., Alpha1-adrenergic receptor antagonists: novel therapy for pituitary adenomas (2005) Mol Endocrinol, 19 (12), pp. 3085-3096
  • Qian, Z.R., Asa, S.L., Siomi, H., Siomi, M.C., Yoshimoto, K., Yamada, S., Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas (2009) Mod Pathol, 22 (3), pp. 431-441
  • Ortiz, L.D., Syro, L.V., Scheithauer, B.W., Ersen, A., Uribe, H., Fadul, C.E., Anti-VEGF therapy in pituitary carcinoma (2012) Pituitary, 15 (3), pp. 445-449
  • Ferone, D., Pivonello, C., Vitale, G., Zatelli, M.C., Colao, A., Pivonello, R., Molecular basis of pharmacological therapy in Cushing's disease (2014) Endocrine, 46 (2), pp. 181-198
  • Du, L., Bergsneider, M., Mirsadraei, L., Young, S.H., Jonker, J.W., Downes, M., Evidence for orphan nuclear receptor TR4 in the etiology of Cushing disease (2013) Proc Natl Acad Sci U S A, 110 (21), pp. 8555-8560
  • Labeur, M., Paez-Pereda, M., Arzt, E., Stalla, G.K., Potential of retinoic acid derivatives for the treatment of corticotroph pituitary adenomas (2009) Rev Endocr Metab Disord, 10 (2), pp. 103-109
  • Hyams, M.N., Gallaher, P.D., Vitamin A therapy in the treatment of vulvar leucoplakia (1950) Am J Obstet Gynecol, 59 (6), pp. 1346-1354
  • Zhang, C., Duvic, M., Retinoids: therapeutic applications and mechanisms of action in cutaneous T-cell lymphoma (2003) Dermatol Ther, 16 (4), pp. 322-330
  • Weinstock, M.A., Bingham, S.F., Digiovanna, J.J., Rizzo, A.E., Marcolivio, K., Hall, R., Tretinoin and the prevention of keratinocyte carcinoma (basal and squamous cell carcinoma of the skin): a veterans affairs randomized chemoprevention trial (2012) J Invest Dermatol, 132 (6), pp. 1583-1590
  • Bodsworth, N.J., Bloch, M., Bower, M., Donnell, D., Yocum, R., Phase III vehicle-controlled, multi-centered study of topical alitretinoin gel 0.1% in cutaneous AIDS-related Kaposi's sarcoma (2001) Am J Clin Dermatol, 2 (2), pp. 77-87
  • Miles, S.A., Dezube, B.J., Lee, J.Y., Krown, S.E., Fletcher, M.A., Saville, M.W., Antitumor activity of oral 9-cis-retinoic acid in HIV-associated Kaposi's sarcoma (2002) AIDS, 16 (3), pp. 421-429
  • Recchia, F., Lalli, A., Lombardo, M., De Filippis, S., Saggio, G., Fabbri, F., Ifosfamide, cisplatin, and 13-cis retinoic acid for patients with advanced or recurrent squamous cell carcinoma of the head and neck: a phase I-II study (2001) Cancer, 92 (4), pp. 814-821
  • Atzpodien, J., Kirchner, H., Jonas, U., Bergmann, L., Schott, H., Heynemann, H., Interleukin-2-and interferon alfa-2a-based immunochemotherapy in advanced renal cell carcinoma: a prospectively randomized trial of the German Cooperative Renal Carcinoma Chemoimmunotherapy group (DGCIN) (2004) J Clin Oncol, 22 (7), pp. 1188-1194
  • Straus, D.J., Duvic, M., Kuzel, T., Horwitz, S., Demierre, M.F., Myskowski, P., Results of a phase II trial of oral bexarotene (Targretin) combined with interferon alfa-2b (Intron-A) for patients with cutaneous T-cell lymphoma (2007) Cancer, 109 (9), pp. 1799-1803
  • Quereux, G., Saint-Jean, M., Peuvrel, L., Brocard, A., Knol, A.C., Dreno, B., Bexarotene in cutaneous T-cell lymphoma: third retrospective study of long-term cohort and review of the literature (2013) Expert Opin Pharmacother, 14 (13), pp. 1711-1721
  • Matthay, K.K., Reynolds, C.P., Seeger, R.C., Shimada, H., Adkins, E.S., Haas-Kogan, D., Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a Children's Oncology Group study (2009) J Clin Oncol, 27 (7), pp. 1007-1013
  • Arrieta, O., Gonzalez-De la Rosa, C.H., Arechaga-Ocampo, E., Villanueva-Rodriguez, G., Ceron-Lizarraga, T.L., Martinez-Barrera, L., Randomized phase II trial of all-trans-retinoic acid with chemotherapy based on paclitaxel and cisplatin as first-line treatment in patients with advanced non-small-cell lung cancer (2010) J Clin Oncol, 28 (21), pp. 3463-3471
  • Douer, D., Zickl, L.N., Schiffer, C.A., Appelbaum, F.R., Feusner, J.H., Shepherd, L., All-trans retinoic acid and late relapses in acute promyelocytic leukemia: very long-term follow-up of the North American Intergroup study I0129 (2013) Leuk Res, 37 (7), pp. 795-801
  • Lo-Coco, F., Avvisati, G., Vignetti, M., Thiede, C., Orlando, S.M., Iacobelli, S., Retinoic acid and arsenic trioxide for acute promyelocytic leukemia (2013) N Engl J Med, 369 (2), pp. 111-121
  • Dennert, G., Immunostimulation by retinoic acid (1985) Ciba Found Symp, 113, pp. 117-131
  • Rhodes, S.J., Chen, R., DiMattia, G.E., Scully, K.M., Kalla, K.A., Lin, S.C., A tissue-specific enhancer confers Pit-1-dependent morphogen inducibility and autoregulation on the pit-1 gene (1993) Genes Dev, 7 (6), pp. 913-932
  • Sanno, N., Sugawara, A., Teramoto, A., Abe, Y., Yen, P.M., Chin, W.W., Immunohistochemical expression of retinoid X receptor isoforms in human pituitaries and pituitary adenomas (1997) Neuroendocrinology, 65 (4), pp. 299-306
  • Drouin, J., Maira, M., Philips, A., Novel mechanism of action for Nur77 and antagonism by glucocorticoids: a convergent mechanism for CRH activation and glucocorticoid repression of POMC gene transcription (1998) J Steroid Biochem Mol Biol, 65 (1-6), pp. 59-63
  • Brown, N.S., Smart, A., Sharma, V., Brinkmeier, M.L., Greenlee, L., Camper, S.A., Thyroid hormone resistance and increased metabolic rate in the RXR-gamma-deficient mouse (2000) J Clin Invest, 106 (1), pp. 73-79
  • Brossaud, J., Pallet, V., Corcuff, J.B., Vitamin A, endocrine tissues and hormones: interplay and interactions (2017) Endocr Connect, 6 (7), pp. R121-R130
  • Napoli, J.L., Cellular retinoid binding-proteins, CRBP, CRABP, FABP5: effects on retinoid metabolism, function and related diseases (2017) Pharmacol Ther, 173, pp. 19-33
  • Germain, P., Chambon, P., Eichele, G., Evans, R.M., Lazar, M.A., Leid, M., International union of pharmacology. LX. Retinoic acid receptors (2006) Pharmacol Rev, 58 (4), pp. 712-725
  • Heyman, R.A., Mangelsdorf, D.J., Dyck, J.A., Stein, R.B., Eichele, G., Evans, R.M., 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor (1992) Cell, 68 (2), pp. 397-406
  • Whitfield, G.K., Jurutka, P.W., Haussler, C.A., Haussler, M.R., Steroid hormone receptors: evolution, ligands, and molecular basis of biologic function (1999) J Cell Biochem Suppl, 32-33, pp. 110-122
  • Williams, G.R., Franklyn, J.A., Physiology of the steroid-thyroid hormone nuclear receptor superfamily (1994) Baillieres Clin Endocrinol Metab, 8 (2), pp. 241-266
  • Wei, L.N., Cellular retinoic acid binding proteins: genomic and non-genomic functions and their regulation (2016) Subcell Biochem, 81, pp. 163-178
  • Liu, Z., Hu, Q., Rosenfeld, M.G., Complexity of the RAR-mediated transcriptional regulatory programs (2014) Subcell Biochem, 70, pp. 203-225
  • Piskunov, A., Al Tanoury, Z., Rochette-Egly, C., Nuclear and extra-nuclear effects of retinoid acid receptors: how they are interconnected (2014) Subcell Biochem, 70, pp. 103-127
  • Wang, L.H., Tsai, S.Y., Cook, R.G., Beattie, W.G., Tsai, M.J., O'Malley, B.W., COUP transcription factor is a member of the steroid receptor superfamily (1989) Nature, 340 (6229), pp. 163-166
  • Tsai, S.Y., Tsai, M.J., Chick ovalbumin upstream promoter-transcription factors (COUP-TFs): coming of age (1997) Endocr Rev, 18 (2), pp. 229-240
  • Qiu, Y., Cooney, A.J., Kuratani, S., DeMayo, F.J., Tsai, S.Y., Tsai, M.J., Spatiotemporal expression patterns of chicken ovalbumin upstream promoter-transcription factors in the developing mouse central nervous system: evidence for a role in segmental patterning of the diencephalon (1994) Proc Natl Acad Sci U S A, 91 (10), pp. 4451-4455
  • Pereira, F.A., Qiu, Y., Tsai, M.J., Tsai, S.Y., Chicken ovalbumin upstream promoter transcription factor (COUP-TF): expression during mouse embryogenesis (1995) J Steroid Biochem Mol Biol, 53 (1-6), pp. 503-508
  • Qin, J., Suh, J.M., Kim, B.J., Yu, C.T., Tanaka, T., Kodama, T., The expression pattern of nuclear receptors during cerebellar development (2007) Dev Dyn, 236 (3), pp. 810-820
  • Ip, B.K., Wappler, I., Peters, H., Lindsay, S., Clowry, G.J., Bayatti, N., Investigating gradients of gene expression involved in early human cortical development (2010) J Anat, 217 (4), pp. 300-311
  • Kliewer, S.A., Umesono, K., Heyman, R.A., Mangelsdorf, D.J., Dyck, J.A., Evans, R.M., Retinoid X receptor-COUP-TF interactions modulate retinoic acid signaling (1992) Proc Natl Acad Sci U S A, 89 (4), pp. 1448-1452
  • Tran, P., Zhang, X.K., Salbert, G., Hermann, T., Lehmann, J.M., Pfahl, M., COUP orphan receptors are negative regulators of retinoic acid response pathways (1992) Mol Cell Biol, 12 (10), pp. 4666-4676
  • Park, J.I., Tsai, S.Y., Tsai, M.J., Molecular mechanism of chicken ovalbumin upstream promoter-transcription factor (COUP-TF) actions (2003) Keio J Med, 52 (3), pp. 174-181
  • Fjose, A., Weber, U., Mlodzik, M., A novel vertebrate svp-related nuclear receptor is expressed as a step gradient in developing rhombomeres and is affected by retinoic acid (1995) Mech Dev, 52 (2-3), pp. 233-246
  • Brubaker, K., McMillan, M., Neuman, T., Nornes, H.O., All-trans retinoic acid affects the expression of orphan receptors COUP-TF I and COUP-TF II in the developing neural tube (1996) Brain Res Dev Brain Res, 93 (1-2), pp. 198-202
  • Jonk, L.J., de Jonge, M.E., Pals, C.E., Wissink, S., Vervaart, J.M., Schoorlemmer, J., Cloning and expression during development of three murine members of the COUP family of nuclear orphan receptors (1994) Mech Dev, 47 (1), pp. 81-97
  • van der Wees, J., Matharu, P.J., de Roos, K., Destree, O.H., Godsave, S.F., Durston, A.J., Developmental expression and differential regulation by retinoic acid of Xenopus COUP-TF-A and COUP-TF-B (1996) Mech Dev, 54 (2), pp. 173-184
  • Zhuang, Y., Gudas, L.J., Overexpression of COUP-TF1 in murine embryonic stem cells reduces retinoic acid-associated growth arrest and increases extraembryonic endoderm gene expression (2008) Differentiation, 76 (7), pp. 760-771
  • Luo, J., Sucov, H.M., Bader, J.A., Evans, R.M., Giguere, V., Compound mutants for retinoic acid receptor (RAR) beta and RAR alpha 1 reveal developmental functions for multiple RAR beta isoforms (1996) Mech Dev, 55 (1), pp. 33-44
  • Qiu, Y., Pereira, F.A., DeMayo, F.J., Lydon, J.P., Tsai, S.Y., Tsai, M.J., Null mutation of mCOUP-TFI results in defects in morphogenesis of the glossopharyngeal ganglion, axonal projection, and arborization (1997) Genes Dev, 11 (15), pp. 1925-1937
  • Alfano, C., Magrinelli, E., Harb, K., Studer, M., The nuclear receptors COUP-TF: a long-lasting experience in forebrain assembly (2014) Cell Mol Life Sci, 71 (1), pp. 43-62
  • Paez-Pereda, M., Kovalovsky, D., Hopfner, U., Theodoropoulou, M., Pagotto, U., Uhl, E., Retinoic acid prevents experimental Cushing syndrome (2001) J Clin Invest, 108 (8), pp. 1123-1131
  • Uruno, A., Saito-Hakoda, A., Yokoyama, A., Kogure, N., Matsuda, K., Parvin, R., Retinoic acid receptor-alpha up-regulates proopiomelanocortin gene expression in AtT20 corticotroph cells (2014) Endocr J, 61 (11), pp. 1105-1114
  • Giacomini, D., Paez-Pereda, M., Theodoropoulou, M., Labeur, M., Refojo, D., Gerez, J., Bone morphogenetic protein-4 inhibits corticotroph tumor cells: involvement in the retinoic acid inhibitory action (2006) Endocrinology, 147 (1), pp. 247-256
  • Tsukamoto, N., Otsuka, F., Miyoshi, T., Yamanaka, R., Inagaki, K., Yamashita, M., Effects of bone morphogenetic protein (BMP) on adrenocorticotropin production by pituitary corticotrope cells: involvement of up-regulation of BMP receptor signaling by somatostatin analogs (2010) Endocrinology, 151 (3), pp. 1129-1141
  • Yacqub-Usman, K., Duong, C.V., Clayton, R.N., Farrell, W.E., Preincubation of pituitary tumor cells with the epidrugs zebularine and trichostatin A are permissive for retinoic acid-augmented expression of the BMP-4 and D2R genes (2013) Endocrinology, 154 (5), pp. 1711-1721
  • Sesta, A., Cassarino, M.F., Tapella, L., Castelli, L., Cavagnini, F., Pecori Giraldi, F., Effect of retinoic acid on human adrenal corticosteroid synthesis (2016) Life Sci, 151, pp. 277-280
  • Ling, G.V., Stabenfeldt, G.H., Comer, K.M., Gribble, D.H., Schechter, R.D., Canine hyperadrenocorticism: pretreatment clinical and laboratory evaluation of 117 cases (1979) J Am Vet Med Assoc, 174 (11), pp. 1211-1215
  • Castillo, V., Giacomini, D., Paez-Pereda, M., Stalla, J., Labeur, M., Theodoropoulou, M., Retinoic acid as a novel medical therapy for Cushing's disease in dogs (2006) Endocrinology, 147 (9), pp. 4438-4444
  • De Marco, V., Pinto, E.M., Mendoca, B.B., (2009) Nelson's syndrome in a poodle dog treated with retinoic acid, p. 34. , World Small Animal Veterinary Association World Congress 2009. São Paulo, Brazil
  • Layton, A., The use of isotretinoin in acne (2009) Dermatoendocrinol, 1 (3), pp. 162-169
  • Bush, Z.M., Lopes, M.B., Hussaini, I.M., Jane, J.A., Jr., Laws, E.R., Jr., Vance, M.L., Immunohistochemistry of COUP-TFI: an adjuvant diagnostic tool for the identification of corticotroph microadenomas (2010) Pituitary, 13 (1), pp. 1-7
  • Wu, Q., Li, Y., Liu, R., Agadir, A., Lee, M.O., Liu, Y., Modulation of retinoic acid sensitivity in lung cancer cells through dynamic balance of orphan receptors nur77 and COUP-TF and their heterodimerization (1997) EMBO J, 16 (7), pp. 1656-1669

Citas:

---------- APA ----------
Fuertes, M., Tkatch, J., Rosmino, J., Nieto, L., Guitelman, M.A. & Arzt, E. (2018) . New insights in cushing disease treatment with focus on a derivative of vitamin A. Frontiers in Endocrinology, 9(MAY).
http://dx.doi.org/10.3389/fendo.2018.00262
---------- CHICAGO ----------
Fuertes, M., Tkatch, J., Rosmino, J., Nieto, L., Guitelman, M.A., Arzt, E. "New insights in cushing disease treatment with focus on a derivative of vitamin A" . Frontiers in Endocrinology 9, no. MAY (2018).
http://dx.doi.org/10.3389/fendo.2018.00262
---------- MLA ----------
Fuertes, M., Tkatch, J., Rosmino, J., Nieto, L., Guitelman, M.A., Arzt, E. "New insights in cushing disease treatment with focus on a derivative of vitamin A" . Frontiers in Endocrinology, vol. 9, no. MAY, 2018.
http://dx.doi.org/10.3389/fendo.2018.00262
---------- VANCOUVER ----------
Fuertes, M., Tkatch, J., Rosmino, J., Nieto, L., Guitelman, M.A., Arzt, E. New insights in cushing disease treatment with focus on a derivative of vitamin A. Front. Endocrinol. 2018;9(MAY).
http://dx.doi.org/10.3389/fendo.2018.00262