Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Hypoxia in freshwater ecosystems is spreading as a consequence of global change, including pollution and eutrophication. In the Patagonian Andes, a decline in precipitation causes reduced lake water volumes and stagnant conditions that limit oxygen transport and exacerbate hypoxia below the upper mixed layer. We analyzed the molecular and biochemical response of the North Patagonian bivalve Diplodon chilensis after 10 days of experimental anoxia (< 0.2 mg O2/L), hypoxia (2 mg O2/L), and normoxia (9 mg O2/L). Specifically, we investigated the expression of an alternative oxidase (AOX) pathway assumed to shortcut the regular mitochondrial electron transport system (ETS) during metabolic rate depression (MRD) in hypoxia-tolerant invertebrates. Whereas, the AOX system was strongly upregulated during anoxia in gills, ETS activities and energy mobilization decreased [less transcription of glycogen phosphorylase (GlyP) and succinate dehydrogenase (SDH) in gills and mantle]. Accumulation of succinate and induction of malate dehydrogenase (MDH) activity could indicate activation of anaerobic mitochondrial pathways to support anoxic survival in D. chilensis. Oxidative stress [protein carbonylation, glutathione peroxidase (GPx) expression] and apoptotic intensity (caspase 3/7 activity) decreased, whereas an unfolded protein response (HSP90) was induced under anoxia. This is the first clear evidence of the concerted regulation of the AOX and ETS genes in a hypoxia-tolerant freshwater bivalve and yet another example that exposure to hypoxia and anoxia is not necessarily accompanied by oxidative stress in hypoxia-tolerant mollusks. © 2018 Yusseppone, Rocchetta, Sabatini, Luquet, Ríos de Molina, Held and Abele.

Registro:

Documento: Artículo
Título:Inducing the alternative Oxidase forms part of the molecular strategy of anoxic survival in freshwater bivalves
Autor:Yusseppone, M.S.; Rocchetta, I.; Sabatini, S.E.; Luquet, C.M.; de Molina, M.C.R.; Held, C.; Abele, D.
Filiación:Laboratorio de Enzimología, Estrés y Metabolismo, INQUIBICEN, Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
Laboratorio de Ecotoxicología Acuática, INIBIOMA, Universidad Nacional del Comahue, Consejo Nacional de Investigaciones Científicas y Técnicas, Junín de los Andes, Argentina
Department of Functional Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Laboratorio de Ecología, Instituto de Investigaciones Marinas y Costeras, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
Palabras clave:Alternative oxidase; Anaerobiosis; Diplodon chilensis; Hypoxia; Mitochondrial electron transport; Oxidative stress; alternative oxidase; caspase 3; caspase 7; glutathione peroxidase; glycogen phosphorylase; malate dehydrogenase; oxidoreductase; succinate dehydrogenase; succinic acid; unclassified drug; animal experiment; animal tissue; anoxia; apoptosis; Argentina; Article; biochemistry; bivalve; controlled study; Diplodon chilensis; electron transport; enzyme activity; enzyme analysis; enzyme induction; enzyme regulation; freshwater species; gene expression regulation; gill; mantle (mollusc); metabolic inhibition; mitochondrial energy transfer; nonhuman; oxidative stress; physical tolerance; protein carbonylation; protein expression; survival; upregulation
Año:2018
Volumen:9
Número:FEB
DOI: http://dx.doi.org/10.3389/fphys.2018.00100
Título revista:Frontiers in Physiology
Título revista abreviado:Front. Physiol.
ISSN:1664042X
CAS:caspase 3, 169592-56-7; caspase 7, 189258-14-8; glutathione peroxidase, 9013-66-5; glycogen phosphorylase, 9032-10-4; malate dehydrogenase, 9001-64-3; oxidoreductase, 9035-73-8, 9035-82-9, 9037-80-3, 9055-15-6; succinate dehydrogenase, 9002-02-2, 9028-10-8; succinic acid, 110-15-6
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1664042X_v9_nFEB_p_Yusseppone

Referencias:

  • Abele, D., Brey, T., Philipp, E., Treatise Online no 92, Part N, Revised, Volume 1 Chapter 7 (2017) Ecophysiology of Extant Marine Bivalvia, , Paleontological Institute, University of Kansas, Lindley Hall
  • Abele, D., Philipp, E., Environmental control and control of the environment: the basis of longevity in bivalves (2013) Gerontology, 59, pp. 261-266
  • Aebi, H., Catalase in vitro (1984) Meth. Enzymol, 105, pp. 121-126
  • Anestis, A., Pörtner, H., Michaelidis, B., Anaerobic metabolic patterns related to stress responses in hypoxia exposed mussels Mytilus galloprovincialis (2010) J. Exp. Mar. Biol. Ecol, 394, pp. 123-133
  • Balzarini, M., Gonzalez, L., Tablada, M., Casanoves, F., Di Rienzo, J., Robledo, C., InfoStat (2008) Manual del Usuario, pp. 1-334. , ed Brujas (Córdoba)
  • Bickler, P.E., Buck, L.T., Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability (2007) Annu. Rev. Physiol, 69, pp. 145-170
  • Bradford, M., A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem, 72, pp. 248-254
  • Chatelain, E., Breton, S., Lemieux, H., Blier, P., Epitoky in nereis (Neanthes) virens (Polychaeta: Nereididae): a story about sex and death (2008) Comp. Biochem. Physiol. B, 149, pp. 202-208
  • Collicutt, J., Hochachka, P., The anaerobic oyster heart: coupling of glucose and aspartate fermentation (1977) J. Comp. Physiol, 115, pp. 147-157
  • David, E., Tanguy, A., Pichavant, K., Moraga, D., Response of the pacific oyster Crassotrea gigas to hypoxia exposure under experimental conditions (2005) FEBS J, 272, pp. 5635-5652
  • De Zwaan, A., Wijisman, T., Anaerobic metabolism in Bivalvia (Mollusca) Characteristics of anaerobic metabolism (1976) Comp. Biochem. Physiol, 54, pp. 313-324
  • Diaz, R.J., Rosenberg, R., Spreading dead zones and consequences for marine ecosystems (2008) Science, 321, pp. 926-929
  • Díaz, S., Renault, T., Villalba, A., Carballal, M., Disseminated neoplasia in cockles Cerastoderma edule: ultrastructural characterisation and effects on haemolymph cell parameters (2011) Dis. Aquat. Org, 96, pp. 157-167
  • Dietz, T.H., Body fluid composition and aerial oxygen consumption in the freshwater mussel, Ligumia subrostrata (Say): effects of dehydration and anoxic stress (1974) Biol. Bull, 147, pp. 560-572
  • Fabbri, E., Valbonesi, P., Franzellitti, S., HSP expression in bivalves (2008) Invert. Surviv. J, 5, pp. 135-161
  • Gäde, G., Wilps, H., Glycogen degradation and end products of anaerobic metabolism in the fresh water bivalve Anodonta cygnea (1975) J. Comp. Physiol, 104, pp. 79-85
  • Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Full-length transcriptome assembly from RNA-seq data without a reference genome (2011) Nat. Biotechnol, 29, pp. 644-652
  • Grandón, M., Barros, J., González, R., Metabolic characterization of Diplodon chilensis (Gray, 1828) (Bivalvia: Hyriidae) exposed to experimental anoxia (2008) Rev. Biol. Mar. Oceanogr, 43, pp. 531-537
  • Greenway, S., Storey, K., The effect of prolonged anoxia on enzyme activities in oysters Crassostrea virginica at different seasons (1999) J. Exp. Mar. Biol. Ecol, 242, pp. 259-272
  • Grieshaber, M., Hardewig, I., Kreutzer, U., Pörtner, H., Physiological and metabolic responses to hypoxia in invertebrates (1994) Rev. Physiol. Biochem. Pharmacol, 125, pp. 43-147
  • Günzler, W., Flohe-Clairborne, A., Glutathione peroxidase (1985) Handbook of Methods for Oxygen Radical Research, pp. 285-290. , ed R. A. Green-Wald (Boca Ratón, FL:CRC Press)
  • Hawley, N., Johengen, T., Rao, Y., Ruberg, S., Beletsky, D., Ludsin, S., Lake Erie hypoxia prompts Canada-US study (2006) EOS Transact. Am. Geophys. Union, 87, pp. 313-324
  • Hochachka, P., Buck, L., Doll, C., Land, S., Unifying theory of hypoxia tolerance: molecular metabolic defense and rescue mechanisms for surviving oxygen lack (1996) Biochemistry, 93, pp. 9493-9498
  • Holwerda, D., Veenhof, P., Aspects of anaerobic metabolism in Anodonta Cygnea, L (1984) Comp. Biochem. Physiol, 78, pp. 707-711
  • Issani, G., Cattani, O., Zurzolo, M., Pagnucco, C., Cortesi, P., Energy metabolism of the mussel, Mytilus galloprovincialis, during long-term anoxia (1995) Comp. Biochem. Physiol, 1, pp. 103-113
  • Ivanina, A., Nesmelova, I., Leamy, L., Sokolov, E., Sokolova, I., Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs (2016) J. Exp. Biol, 219, pp. 1659-1674
  • Joehanes, R., Nelson, J., QGene 4.0, an extensible Java QTL-analysis platform (2008) Bioinformatics, 24, pp. 2788-2789
  • Larade, K., Storey, K., A profile of the metabolic responses to anoxia in marine invertebrates (2002) Sensing, Signaling and Cell Adaptation, pp. 27-46. , eds K. Storey and J. M. Storey (Amsterdam: Elsevier Science)
  • Levin, L., Ekau, W., Gooday, A., Jorissen, F., Middelburg, J., Naqvi, S., Effects of natural and human-induced hypoxia on coastal benthos (2009) Biogeosciences, 6, pp. 2063-2098
  • Liu, M., Guo, X., A novel and stress adaptive alternative oxidase derived from alternative splicing of duplicated exon in oyster Crassostrea virginica (2017) Sci. Rep, 7, p. 10785
  • Livingstone, D.R., Lips, F., Garcia Martinez, P., Pipe, R.K., Antioxidant enzymes in the digestive gland of the common mussel Mytilus edulis (1992) Mar. Biol, 112, pp. 265-276
  • McDonald, A., Vanlerberghe, G., Staples, J., Alternative oxidase in animals: unique characteristics and taxonomic distribution (2009) J. Exp. Biol, 212, pp. 2627-2634
  • Paerl, H., Pinckney, J., Fear, J., Peierls, B., Ecosystem responses to internal and watershed organic matter loading: consequences for hypoxia in the eutrophying Neuse River Estuary, North Carolina, USA (1998) Mar. Ecol. Prog. Ser, 166, pp. 17-25
  • Pannunzio, T., Storey, K., Antioxidant defenses and lipid peroxidation during anoxia stress and aerobic recovery in the marine gastropod Littorina littorea (1998) J. Exp. Mar. Biol. Ecol, 221, pp. 277-292
  • Philipp, E., Wessels, W., Gruber, H., Strahl, J., Wagner, A., Ernst, I., Gene expression and physiological changes of different populations of the long-lived bivalve Arctica islandica under low oxygen conditions (2012) PLoS ONE, 7
  • Ribeiro Guevara, S., Arribére, A., Bubach, D., Sánchez, R., Silver contamination on abiotic and biotic compartments of Nahuel Huapi National Park lakes, Patagonia, Argentina (2005) Sci. Total Environ, 336, pp. 119-134
  • Rivera-Ingraham, G., Bickmeyer, U., Abele, D., The physiological response of the marine platyhelminth Macrostomum lignano to different environmental oxygen concentrations (2013) J. Exp. Biol, 216, pp. 2741-2751
  • Rivera-Ingraham, G., Rocchetta, I., Meyer, S., Abele, D., Oxygen radical formation in anoxic transgression and anoxia-reoxygenation: foe or phantom? Experiments with a hypoxia tolerant bivalve (2013) Mar. Environ. Res, 92, pp. 110-119
  • Rocchetta, I., Lomovasky, B., Yusseppone, M., Sabatini, S., Bieczynskic, F., Ríos de Molina, M., Growth, abundance, morphometric and metabolic parameters of three populations of Diplodon chilensis subject to different levels of natural and anthropogenic organic matter imput in a glaciar lake of North Patagonia (2014) Limnologica, 44, pp. 72-80
  • Sabatini, S., Rocchetta, I., Luquet, C., Guido, M., Ríos de Molina, M., Effects of sewage pollution and bacterial load on growth and oxidative balance in the freshwater mussel Diplodon chilensis (2011) Limnologica, 41, pp. 356-362
  • "Tercera Comunicación Nacional sobre Cambio Climático. Cambios climáticos en la región Patagonia, Antártida e Islas del Atlántico Sur. Capítulo 8," (2014) In Cambio Climático en Argentina; Tendencias y Proyecciones, , http://3cn.cima.fcen.uba.ar/3cn_informe.php, (Buenos Aires: Centro de Investigaciones del Mar y la Atmósfera, CIMA/CONICET-UBA)
  • Sheldon, F., Walker, F., Effects of hypoxia on oxygen consumption by two species of freshwater mussel (Unionacea: Hyyriidae) from the river Murray (1989) Aus. J. Mar. Fresh. Res, 40, pp. 491-499
  • Storey, K., Storey, J., Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation (1990) Q. Rev. Biol, 63, pp. 145-174
  • Strahl, J., Abele, D., Cell turnover in tissues of the long-lived ocean quahog Arctica islandica and the short-lived scallop Aequipecten opercularis (2010) Mar. Biol, 157, pp. 1283-1292
  • Strahl, J., Brey, T., Philipp, E., Thorarinsdóttir, G., Fischer, N., Wessels, W., Physiological responses to self-induced burrowing and metabolic rate depression in the ocean quahog Arctica islandica (2011) J. Exp. Biol, 214, pp. 4223-4233
  • Strahl, J., Dringen, R., Schmidt, M., Hardenberg, S., Abele, D., Metabolic and physiological responses in tissues of the long-lived bivalve Arctica islandica to oxygen deficiency (2011) Comp. Biochem. Physiol. A, 158, pp. 513-519
  • Sussarellu, R., Fabioux, C., Camacho, S.M., Le Goïc, N., Lambert, C., Soudant, P., Molecular and cellular response to short-term oxygen variations in the Pacific oyster Crassostrea gigas (2012) J. Exp. Mar. Biol. Ecol, 412, pp. 87-95
  • Theede, H., Comparative studies on the influence of oxygen deficiency and hydrogen sulphide on marine bottom invertebrates (1973) Neth. J. Sea. Res, 7, pp. 244-252
  • Tschischka, K., Abele, D., Portner, H., Mitochondrial oxyconformity and cold adaptation in the polychaete Nereis pelagica and the bivalve Arctica islandica from the Baltic and White Seas (2000) J. Exp. Biol, 203, pp. 3355-3368
  • Valdovinos, C., Pedreros, P., Geographic variations in shell growth rates of mussel Diplodon chilensis from temperate lakes of Chile: implications for biodiversity conservation (2007) Limnologica, 37, pp. 63-75
  • van den Thillart, G., de Vries, I., Excretion of volatile fatty acids by anoxic Mytilus edulis and Anodonta cygnea (1985) Comp. Biochem. Physiol, 80, pp. 299-301
  • van Hellemond, J.J., van der Klei, A., van Weelden, S.W., Tielens, A.G., Biochemical and evolutionary aspects of anaerobically fuctioning mitochondria (2003) Philos. Trans. R. Soc. Lond. Soc. B, 358, pp. 205-213
  • Welker, A., Moreira, D., Campos, E., Hermes-Lima, M., Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability (2013) Comp. Biochem. Physiol. A, 165, pp. 384-404
  • Zurburg, W., Kluytmans, J.H., Organ specific changes in energy metabolism due to anaerobiosis in the sea mussel Mytilus edulis (L.) (1980) Comp. Biochem. Physiol. B, 67, pp. 317-322

Citas:

---------- APA ----------
Yusseppone, M.S., Rocchetta, I., Sabatini, S.E., Luquet, C.M., de Molina, M.C.R., Held, C. & Abele, D. (2018) . Inducing the alternative Oxidase forms part of the molecular strategy of anoxic survival in freshwater bivalves. Frontiers in Physiology, 9(FEB).
http://dx.doi.org/10.3389/fphys.2018.00100
---------- CHICAGO ----------
Yusseppone, M.S., Rocchetta, I., Sabatini, S.E., Luquet, C.M., de Molina, M.C.R., Held, C., et al. "Inducing the alternative Oxidase forms part of the molecular strategy of anoxic survival in freshwater bivalves" . Frontiers in Physiology 9, no. FEB (2018).
http://dx.doi.org/10.3389/fphys.2018.00100
---------- MLA ----------
Yusseppone, M.S., Rocchetta, I., Sabatini, S.E., Luquet, C.M., de Molina, M.C.R., Held, C., et al. "Inducing the alternative Oxidase forms part of the molecular strategy of anoxic survival in freshwater bivalves" . Frontiers in Physiology, vol. 9, no. FEB, 2018.
http://dx.doi.org/10.3389/fphys.2018.00100
---------- VANCOUVER ----------
Yusseppone, M.S., Rocchetta, I., Sabatini, S.E., Luquet, C.M., de Molina, M.C.R., Held, C., et al. Inducing the alternative Oxidase forms part of the molecular strategy of anoxic survival in freshwater bivalves. Front. Physiol. 2018;9(FEB).
http://dx.doi.org/10.3389/fphys.2018.00100