Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The human brain has been studied at multiple scales, from neurons, circuits, areas with well-defined anatomical and functional boundaries, to large-scale functional networks which mediate coherent cognition. In a recent work, we addressed the problem of the hierarchical organization in the brain through network analysis. Our analysis identified functional brain modules of fractal structure that were inter-connected in a small-world topology. Here, we provide more details on the use of network science tools to elaborate on this behavior. We indicate the importance of using percolation theory to highlight the modular character of the functional brain network. These modules present a fractal, self-similar topology, identified through fractal network methods. When we lower the threshold of correlations to include weaker ties, the network as a whole assumes a small-world character. These weak ties are organized precisely as predicted by theory maximizing information transfer with minimal wiring costs. © 2012 Gallos, Sigman and Makse.

Registro:

Documento: Artículo
Título:The conundrum of functional brain networks: Small-world efficiency or fractal modularity
Autor:Gallos, L.K.; Sigman, M.; Makse, H.A.
Filiación:Levich Institute and Physics Department, City College of New York, New York, NY, United States
Integrative Neuroscience Laboratory, Physics Department, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Brain functional networks; fMRI; Fractal networks; Modularity; Percolation; Small-world
Año:2012
Volumen:3 MAY
DOI: http://dx.doi.org/10.3389/fphys.2012.00123
Título revista:Frontiers in Physiology
Título revista abreviado:Front. Physiol.
ISSN:1664042X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1664042X_v3MAY_n_p_Gallos

Referencias:

  • Bullmore, E., Sporns, O., Complex brain networks: graph theoretical analysis of structural and functional systems (2009) Nat. Rev. Neurosci., 10, p. 186
  • Bunde, A., Havlin, S., Percolation I (1996) Fractals and Disordered Systems, pp. 51-96. , 2nd Edn, eds A. Bunde and S. Havlin (Heidelberg: Springer-Verlag)
  • Caldarelli, G., Vespignani, A., (2007) Large Scale Structure and Dynamics of Complex Networks, , (eds). Singapore: World Scientific
  • Dux, P.E., Ivanoff, J., Asplund, C.L., Marois, R., Isolation of a central bottleneck of information processing with time-resolved fMRI (2006) Neuron, 52, p. 1109
  • Eguiluz, V.M., Chialvo, D.R., Cec-chi, G.A., Baliki, M., Apkarian, A.V., Scale-free brain functional networks (2005) Phys. Rev. Lett., 94, p. 018102
  • Gallos, L.K., Makse, H.A., Sig-man, M., A small-world of weak ties provides optimal global integration of self-similar modules in functional brain networks (2012) Proc. Natl. Acad. Sci. U. S. A., 109, p. 2825
  • Gallos, L.K., Song, C., Havlin, S., Makse, H.A., Scaling theory of transport in complex biological networks (2007) Proc. Natl. Acad. Sci. U. S. A., 104, p. 7746
  • Galvao, V., Miranda, J.G.V., Andrade, R.F.S., Andrade Jr, J.S., Gallos, L.K., Makse, H.A., Modularity map of the network of human cell differentiation (2010) Proc. Natl. Acad. Sci. U. S. A., 107, p. 5750
  • Goh, K.I., Salvi, G., Kahng, B., Kim, D., Skeleton and fractal scaling in complex networks (2006) Phys. Rev. Lett., 96, p. 018701
  • Granovetter, M.S., The strength of weak ties (1973) Am. J. Sociol., 78, p. 1360
  • Guimerà, R., Amaral, L.A.N., Functional cartography of complex metabolic networks (2005) Nature, 433, p. 895
  • Kim, J.S., Goh, K.I., Salvi, G., Oh, E., Kahng, B., Kim, D., Fractality in complex networks: critical and supercritical skeletons (2007) Phys. Rev., E75, p. 016110
  • Li, G.S., Reis, D.S., Moreira, A.A., Havlin, S., Stanley, H.E., Andrade Jr, J.S., Towards design principles for optimal transport networks (2010) Phys. Rev. Lett., 104, p. 018701
  • Menon, R.S., Luknowsky, D.C., Gati, J.S., Mental chronome-try using latency-resolved functional MRI (1998) Proc. Natl. Acad. Sci. U. S. A., 95, p. 10902
  • Newman, M.E.J., Girvan, M., Finding and evaluating community structure in networks (2004) Phys. Rev., E69, p. 026113
  • Radicchi, F., Ramasco, J.J., Barrat, A., Fortunato, S., Complex networks renormalization: flows and fixed points (2008) Phys. Rev. Lett., 101, p. 148701
  • Rozenfeld, H.D., Song, C., Makse, H.A., Small-world to fractal transition in complex networks: a renormalization group approach (2010) Phys. Rev. Lett., 104, p. 025701
  • Sigman, M., Dehaene, S., Brain mechanisms of serial and parallel processing during dual-task performance (2008) J. Neurosci., 28, p. 7585
  • Sigman, M., Jobert, A., Dehaene, S., Parsing a sequence of brain activations of psychological times using fMRI (2007) Neuroimage, 35, p. 655
  • Song, C., Gallos, L.K., Havlin, S., Makse, H.A., How to calculate the fractal dimension of a complex network: the box covering algorithm (2007) J. Stat. Mech., 2007. , P03006
  • Song, C., Havlin, S., Makse, H.A., Self-similarity of complex networks (2005) Nature, 433, p. 392
  • Song, S., Sjostrom, P.J., Reigl, M., Nelson, S., Chklovskii, D.B., Highly non-random features of synaptic connectivity in local cortical circuits (2005) PLoS Biol, 3, pp. e68
  • Song, C., Havlin, S., Makse, H.A., Origins of fractality in the growth of complex networks (2006) Nat. Phys., 2, p. 275
  • Sporns, O., Tononi, G., Kotter, R., The human connectome: a structural description of the human brain (2005) PLoS Comput. Biol., 1, pp. e42
  • Stanley, H.E., (1971) Introduction to Phase Transitions and Critical Phenomena, , Oxford: Oxford University Press
  • Vicsek, T., (1992) Fractal Growth Phenomena, , 2nd Edn, Part IV. Singapore: World Scientific
  • Watts, D., Strogatz, S., Collective dynamics of "small-world" networks (1998) Nature, 393, p. 440

Citas:

---------- APA ----------
Gallos, L.K., Sigman, M. & Makse, H.A. (2012) . The conundrum of functional brain networks: Small-world efficiency or fractal modularity. Frontiers in Physiology, 3 MAY.
http://dx.doi.org/10.3389/fphys.2012.00123
---------- CHICAGO ----------
Gallos, L.K., Sigman, M., Makse, H.A. "The conundrum of functional brain networks: Small-world efficiency or fractal modularity" . Frontiers in Physiology 3 MAY (2012).
http://dx.doi.org/10.3389/fphys.2012.00123
---------- MLA ----------
Gallos, L.K., Sigman, M., Makse, H.A. "The conundrum of functional brain networks: Small-world efficiency or fractal modularity" . Frontiers in Physiology, vol. 3 MAY, 2012.
http://dx.doi.org/10.3389/fphys.2012.00123
---------- VANCOUVER ----------
Gallos, L.K., Sigman, M., Makse, H.A. The conundrum of functional brain networks: Small-world efficiency or fractal modularity. Front. Physiol. 2012;3 MAY.
http://dx.doi.org/10.3389/fphys.2012.00123