Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Functional magnetic resonance imaging (fMRI) techniques have contributed significantly to our understanding of brain function. Current methods are based on the analysis of gradual and continuous changes in the brain blood oxygenated level dependent (BOLD) signal. Departing from that approach, recent work has shown that equivalent results can be obtained by inspecting only the relatively large amplitude BOLD signal peaks, suggesting that relevant information can be condensed in discrete events. This idea is further explored here to demonstrate how brain dynamics at resting state can be captured just by the timing and location of such events, i.e., in terms of a spatiotemporal point process. The method allows, for the first time, to define a theoretical framework in terms of an order and control parameter derived from fMRI data, where the dynamical regime can be interpreted as one corresponding to a system close to the critical point of a second order phase transition. The analysis demonstrates that the resting brain spends most of the time near the critical point of such transition and exhibits avalanches of activity ruled by the same dynamical and statistical properties described previously for neuronal events at smaller scales. Given the demonstrated functional relevance of the resting state brain dynamics, its representation as a discrete process might facilitate large-scale analysis of brain function both in health and disease. © 2012 Tagliazucchi, Balen-zuela, Fraiman and Chialvo.

Registro:

Documento: Artículo
Título:Criticality in large-scale brain fmri dynamics unveiled by a novel point process analysis
Autor:Tagliazucchi, E.; Balenzuela, P.; Fraiman, D.; Chialvo, D.R.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Department of Neurology and Brain Imaging Center, Goethe-University Frankfurt, Frankfurt am Main, Germany
Consejo Nacional de Investigaciones Científicas yTecnológicas, Buenos Aires, Argentina
Departamento de Matemática y Ciencias, Universidad de San Andrés, Buenos Aires, Argentina
Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
Palabras clave:Brain dynamics; Criticality; Fmri; Point processes
Año:2012
Volumen:3 FEB
DOI: http://dx.doi.org/10.3389/fphys.2012.00015
Título revista:Frontiers in Physiology
Título revista abreviado:Front. Physiol.
ISSN:1664042X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1664042X_v3FEB_n_p_Tagliazucchi

Referencias:

  • Aguirre, G.K., Zarahn, E., D'Esposito, M., The variability of human BOLD hemodynamic responses (1998) Neuroimage, 8, pp. 360-369
  • Allegrini, P., Paradisi, P., Menicucci, D., Gemignani, A., Fractal complexity in spontaneous EEG metastable-state transitions: new vistas on integrated neural dynamics (2010) Front. Physiol., 1 (128), pp. 1-9
  • Bak, P., (1996) How Nature Works: The Science of Self-Organized Criticality, , New York: Copernicus Books
  • Beckmann, C.F., DeLuca, M., Devlin, J.T., Smith, S.M., Investigations into resting-state connectivity using independent component analysis (2005) Philos. Trans. R. Soc. Lond. B Biol. Sci., 360, pp. 1001-1013
  • Beckmann, C.F., Smith, S.M., Probabilistic independent component analysis for functional magnetic resonance imaging (2004) IEEE Trans. Med. Imaging, 23, pp. 137-152
  • Beggs, J.M., Plenz, D., Neu-ronal avalanches in neocortical circuits (2003) J. Neurosci., 23, pp. 11167-11177
  • Castro, R., Sauer, T., Correlation dimension of attractors through interspike intervals (1997) Phys. Rev. E, 55, pp. 287-290
  • Chialvo, D.R., Emergent complex neural dynamics (2010) Nat. Phys., 6, pp. 744-750
  • Contreras, D., Steriade, M., Cellular basis of EEG slow rhythms: a study of dynamic corticothala-mic relationships (1995) J. Neurosci., 15, pp. 604-622
  • Cordes, D., Haughton, V.M., Arfanakis, K., Carew, J.D., Turski, P.A., Moritz, C.H., Quigley, M.A., and Meyerand, M.E., Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data (2001) Am. J. Neuroradiol., 22, pp. 1326-1333
  • Cordes, D., Haughton, V.M., Arfanakis, K., Wendt, G.J., Turski, P.A., Moritz, C.H., Quigley, M.A., Meyerand, M.E., Mapping functional related regions of brain with functional connectivity MR imaging (2000) Am. J. Neuroradiol., 21, pp. 1636-1644
  • Cox, D.R., Isham, V., (1980) Point Processes, , London: Chapman and Hill
  • de Arcangelis, L., Herrmann, H.J., Learning as a phenomenon occurring in a critical state (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 3977-3981
  • Deco, G., Jirsa, V., McIntosh, A.R., Sporns, O., Kotter, R., Key role of coupling, delay, and noise in resting brain fluctuations (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 10302-10307
  • Expert, P., Lambiotte, R., Chialvo, D.R., Christensen, K., Jensen, H.J., Sharp, D.J., Turkheimer, F., Self-similar correlation function in brain resting state fMRI (2011) J. R. Soc. Interface, 8, pp. 472-479
  • Fox, M.D., Raichle, M.E., Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging (2007) Nat. Rev. Neurosci., 8, pp. 700-711
  • Fraiman, D., Chialvo, D.R., Optimal information-sharing in brain resting state networks. arXiv: 1011 (2010), p. 1192; Friston, K.J., Fletcher, P., Josephs, O., Holmes, A., Rugg, M.D., Turnera, R., Event-related fMRI: characterizing differential responses (1998) Neuroimage, 7, pp. 30-40
  • Friston, K.J., Frith, C.D., Turner, R., Frackowiak, R.S.J., Characterizing evoked hemody-namics with fMRI (1995) Neuroimage, 2, pp. 157-165
  • Grassberger, P., Procaccia, I., Measuring the strangeness of strange attractors (1983) Physica, 9 D, pp. 189-208
  • Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V., Functional connectivity in the resting brain: a network analysis of the default mode hypothesis (2003) Proc. Natl. Acad. Sci. U.S.A., 100, pp. 253-258
  • Greicius, M.D., Srivastava, G., Reiss, A.L., Menon, V., Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI (2004) Proc. Natl. Acad. Sci. U.S.A., 101, pp. 4637-4642
  • Hegger, R., Kantz, H., Embedding of sequences of time intervals (1997) Europhys. Lett., 38, pp. 267-272
  • Jensen, H.J., (1998) Self-Organized Criticality, , Cambridge: Cambridge University Press
  • Jezzard, P., Mathews, P., Smith, S.M., (2001) Functional MRI: An Introduction to Methods, , New York: Oxford University Press
  • Kaplan, A.Y., Fingelkurts, A.A., Fin-gelkurts, A.A., Borisov, S.V., Darkhovsky, B.S., Non-stationary nature of the brain activity as revealed by EEG/MEG: methodological, practical and conceptual challenges (2005) Signal Process, 85, pp. 2190-2212
  • Kinouchi, O., Copelli, M., Optimal dynamical range of excitable networks at criticality (2006) Nat. Phys., 2, pp. 348-351
  • Kitzbichler, M.G., Smith, M.L., Chris-tensen, S.R., Bullmore, E., Broadband criticality of human brain network synchronization (2009) PLoS Comput. Biol., 5, pp. e1000314. , doi:10.1371/journal.pcbi.1000314
  • Koenig, T., Prichep, L., Lehmann, D., Valdes Sosa, P., Braeker, E., Klein-logel, H., Isenhart, R., John, E.R., Millisecond by millisecond, year by year: normative EEG microstates and developmental stages (2002) Neuroimage, 16, pp. 41-48
  • Lee, U., Mashour, G.A., Kim, S., Noh, G.J., Choie, B.M., Propo-fol induction reduces the capacity for neural information integration: implications for the mechanism of consciousness and general anesthesia (2009) Conscious. Cogn., 18, pp. 56-64
  • Lucy, L.B., An iterative technique for the rectification of observed distributions (1974) Astron. J., 79, pp. 745-754
  • Packard, N., Crutchfield, J., Farmer, J.D., Shaw, R., Geometry from a time series (1980) Phys. Rev. Lett., 45, pp. 712-716
  • Petermann, T., Thiagarajan, T.C., Lebedev, M.A., Nicolelis, M.A.L., Chialvo, D.R., Plenz, D., Spontaneous cortical activity in awake monkeys composed of neuronal avalanches (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 15921-15926
  • Priesemann, V., Munk, M.H., Wibral, M., Sub-sampling effects in neuronal avalanche distributions recorded in vivo (2009) BMC Neurosci, 10, p. 40. , doi:10.1186/1471-2202-10-40
  • Prigogine, I., (1962) Non-Equilibrium Statistical Mechanics, , New York: Interscience Publishers
  • Raichle, M.E., The brains dark energy (2006) Science, 314, pp. 1249-1250
  • Richardson, W.H., Bayesian-based iterative method of image restoration (1972) J. Opt. Soc. Am., 62, pp. 55-59
  • Rodriguez, E., George, N., Lachaux, J.P., Martinerie, J., Renault, B., Varela, F.J., Perception's shadow: long-distance synchronization of human brain activity (1999) Nature, 397, pp. 430-433
  • Rolls, E.T., Deco, G., (2010) The Noisy Brain, , London: Oxford University Press
  • Roux, J.C., Rossi, J., Bachelart, S., Vidal, C., Representation of a strange attractor from an experimental study of turbulence (1980) Phys. Lett. A, 77, pp. 391-393
  • Roux, J.C., Swinney, H., Topology of chaos in a chemical reaction (1981) Nonlinear Phenomena in Chemical Dynamics, pp. 38-43. , eds C. Vidal and A. Pacault (Berlin: Springer-Verlag)
  • Shew, W.L., Yang, H., Petermann, T., Roy, R., Plenz, D., Neuronal avalanches imply maximum dynamic range in cortical networks at criticality (2009) J. Neurosci., 24, pp. 15595-15600
  • Shew, W.L., Yang, H., Yu, S., Roy, R., Plenz, D., Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches (2011) J. Neurosci., 31, pp. 55-63
  • Smith, S.M., Fox, P.T., Miller, K.L., Glahn, D.C., Fox, P.M., Mackay, C.E., Filippini, N., Beckmann, C.F., Correspondence of the brain's functional architecture during activation and rest (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 13040-13405
  • Sporns, O., (2010) Networks of the Brain, , London: MIT Press
  • Sporns, O., The human connec-tome:a complex network (2011) Ann. N. Y. Acad. Sci., 1224, pp. 101-125
  • Sporns, O., Tononi, G., Kotter, R., The human connec-tome: a structural description of the human brain (2005) PLoS Comput. Biol., 1, pp. 245-251. , doi:10.1371/jour-nal.pcbi.0010042
  • Stauffer, D., Aharony, A., (1992) Introduction to Percolation Theory, , London: Taylor & Francis
  • Steriade, M., McCormick, D.A., Sejnowski, T.J., Thalamo-cortical oscillations in the sleeping and aroused brain (1993) Science, 262, pp. 679-685
  • Steyn-Rose, S.A., Steyn-Rose, M., (2010) Modeling Phase Transitions in the Brain, , (eds). New York, NY: Springer
  • Tagliazucchi, E., Balenzuela, P., Fraiman, D., Chialvo, D.R., Brain resting state is disrupted in chronic back pain patients (2010) Neurosci. Lett., 485, pp. 26-31
  • Tagliazucchi, E., Balenzuela, P., Fraiman, D., Montoya, P., Chialvo, D.R., Spontaneous BOLD event triggered averages for estimating functional connectivity at resting state (2010) Neurosci. Lett., 488, pp. 158-163
  • Tagliazucchi, E., Chialvo, D.R., (2011) The collective brain is critical, , arxiv: 1103. 2070v1
  • Takens, F., Dynamical systems and turbulence, Warwick (1980) Lecture Notes in Math, 898, pp. 366-381. , eds D. A. Rand and L.-S. Young (Berlin: Springer-Verlag)
  • Thiagarajan, T.C., Lebedev, M.A., Nicolelis, M.A., Plenz, D., Coherence potentials: lossless, all-or-none network events in the cortex (2010) PLoS Biol, 8, pp. e1000278. , doi:10.1371/journal.pbio.1000278
  • Tononi, G., An information integration theory of consciousness (2004) BMC Neurosci, 5, p. 42. , doi:10.1186/1471-2202-5-42
  • Tononi, G., Sporns, O., Edelman, G.M., A measure for brain complexity: relating functional segregation and integration in the nervous system (1994) Proc. Natl. Acad. Sci. U.S.A., pp. 5033-5037
  • Traub, R.D., Miles, R., Wong, R.K., Model of the origin of rhythmic population oscillations in the hippocampal slice (1989) Science, 243, pp. 1319-1325
  • Tsang, I.R., Tsang, I.J., Cluster size diversity, percolation and complex systems (1999) Phys. Rev. E., 60, pp. 2684-2698
  • Van De Ville, D., Britz, J., Michel, C.M., EEG microstate sequences in healthy humans at rest reveal scale-free dynamics (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 18179-18184
  • Vedel Jensen, E.B., Thorarinsdottir, T.L., A spatio-temporal model for functional magnetic resonance imaging data with a view to resting state networks (2007) Scand. J. Stat., 34, pp. 587-614

Citas:

---------- APA ----------
Tagliazucchi, E., Balenzuela, P., Fraiman, D. & Chialvo, D.R. (2012) . Criticality in large-scale brain fmri dynamics unveiled by a novel point process analysis. Frontiers in Physiology, 3 FEB.
http://dx.doi.org/10.3389/fphys.2012.00015
---------- CHICAGO ----------
Tagliazucchi, E., Balenzuela, P., Fraiman, D., Chialvo, D.R. "Criticality in large-scale brain fmri dynamics unveiled by a novel point process analysis" . Frontiers in Physiology 3 FEB (2012).
http://dx.doi.org/10.3389/fphys.2012.00015
---------- MLA ----------
Tagliazucchi, E., Balenzuela, P., Fraiman, D., Chialvo, D.R. "Criticality in large-scale brain fmri dynamics unveiled by a novel point process analysis" . Frontiers in Physiology, vol. 3 FEB, 2012.
http://dx.doi.org/10.3389/fphys.2012.00015
---------- VANCOUVER ----------
Tagliazucchi, E., Balenzuela, P., Fraiman, D., Chialvo, D.R. Criticality in large-scale brain fmri dynamics unveiled by a novel point process analysis. Front. Physiol. 2012;3 FEB.
http://dx.doi.org/10.3389/fphys.2012.00015