Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Neurons are the most asymmetric cell types, with their axons commonly extending over lengths that are thousand times longer than the diameter of the cell soma. Fluorescence nanoscopy has recently unveiled that actin, spectrin and accompanying proteins form a membrane-associated periodic skeleton (MPS) that is ubiquitously present in mature axons from all neuronal types evaluated so far. The MPS is a regular supramolecular protein structure consisting of actin "rings" separated by spectrin tetramer "spacers". Although the MPS is best organized in axons, it is also present in dendrites, dendritic spine necks and thin cellular extensions of non-neuronal cells such as oligodendrocytes and microglia. The unique organization of the actin/spectrin skeleton has raised the hypothesis that it might serve to support the extreme physical and structural conditions that axons must resist during the lifespan of an organism. Another plausible function of the MPS consists of membrane compartmentalization and subsequent organization of protein domains. This review focuses on what we know so far about the structure of the MPS in different neuronal subdomains, its dynamics and the emerging evidence of its impact in axonal biology. © 2018 Unsain, Stefani and Cáceres.

Registro:

Documento: Artículo
Título:The actin/spectrin membrane-associated periodic skeleton in neurons
Autor:Unsain, N.; Stefani, F.D.; Cáceres, A.
Filiación:Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
Universidad Nacional de Córdoba, Córdoba, Argentina
Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina
Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:actin; Axon; Cytoskeleton; Dendrites; Fluorescence nanoscopy; Spectrin; Super resolution microscopy; actin; spectrin; axon; cell body; cell membrane; cells by body anatomy; dendrite; dendritic spine; endocytosis; exocytosis; fluorescence analysis; fluorescence nanoscopy; human; microglia; nerve cell; oligodendroglia; protein domain; protein structure; Short Survey; supramolecular chemistry
Año:2018
Volumen:10
Número:MAY
DOI: http://dx.doi.org/10.3389/fnsyn.2018.00010
Título revista:Frontiers in Synaptic Neuroscience
Título revista abreviado:Front. Synaptic Neurosci.
ISSN:16633563
CAS:spectrin, 12634-43-4
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16633563_v10_nMAY_p_Unsain

Referencias:

  • Albrecht, D., Winterflood, C.M., Sadeghi, M., Tschager, T., Noé, F., Ewers, H., Nanoscopic compartmentalization of membrane protein motion at the axon initial segment (2016) J. Cell Biol, 215, pp. 37-46
  • Andrade, D.M., Clausen, M.P., Keller, J., Mueller, V., Wu, C., Bear, J.E., Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane-a minimally invasive investigation by STED-FCS (2015) Sci. Rep, 5, p. 11454
  • Baines, A.J., Evolution of spectrin function in cytoskeletal and membrane networks (2009) Biochem. Soc. Trans, 37, pp. 796-803
  • Baines, A.J., The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life (2010) Protoplasma, 244, pp. 99-131
  • Bär, J., Kobler, O., van Bommel, B., Mikhaylova, M., Periodic F-actin structures shape the neck of dendritic spines (2016) Sci. Rep, 6, p. 37136
  • Barabas, F.M., Masullo, L.A., Bordenave, M.D., Giusti, A.S., Unsain, N., Refojo, D., Automated quantification of protein periodic nanostructures in fluorescence nanoscopy images: abundance and regularity of neuronal spectrin membrane-associated skeleton (2017) Sci. Rep, 7, p. 16029
  • Bennett, V., Baines, A.J., Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues (2001) Physiol. Rev, 81, pp. 1353-1392
  • Berger, S.L., Leo-Macias, A., Yuen, S., Khatri, L., Pfennig, S., Zhang, Y., Localized myosin II activity regulates assembly and plasticity of the axon initial segment (2018) Neuron, 97, pp. 555.e6-570.e6
  • Byers, T.J., Branton, D., Visualization of the protein associations in the erythrocyte membrane skeleton (1985) Proc. Natl. Acad. Sci. U S A, 82, pp. 6153-6157
  • D'Este, E., Kamin, D., Balzarotti, F., Hell, S.W., Ultrastructural anatomy of nodes of Ranvier in the peripheral nervous system as revealed by STED microscopy (2017) Proc. Natl. Acad. Sci. U S A, 114, pp. E191-E199
  • D'Este, E., Kamin, D., Göttfert, F., El-Hady, A., Hell, S.W., STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons (2015) Cell Rep, 10, pp. 1246-1251
  • D'Este, E., Kamin, D., Velte, C., Göttfert, F., Simons, M., Hell, S.W., Subcortical cytoskeleton periodicity throughout the nervous system (2016) Sci. Rep, 6, p. 22741
  • Delaunay, J., The molecular basis of hereditary red cell membrane disorders (2007) Blood Rev, 21, pp. 1-20
  • Fan, A., Tofangchi, A., Kandel, M., Popescu, G., Saif, T., Coupled circumferential and axial tension driven by actin and myosin influences in vivo axon diameter (2017) Sci. Rep, 7, p. 14188
  • Galiano, M.R., Jha, S., Ho, T.S.-Y., Zhang, C., Ogawa, Y., Chang, K.-J., A distal axonal cytoskeleton forms an intra-axonal boundary that controls axon initial segment assembly (2012) Cell, 149, pp. 1125-1139
  • Gardner, K., Bennett, V., Modulation of spectrin-actin assembly by erythrocyte adducin (1987) Nature, 328, pp. 359-362
  • Glebova, N.O., Ginty, D.D., Growth and survival signals ontrolling sympathetic nervous system development (2005) Annu. Rev. Neurosci, 28, pp. 191-222
  • Grecco, H.E., Schmick, M., Bastiaens, P.I.H., Signaling from the living plasma membrane (2011) Cell, 144, pp. 897-909
  • Hammarlund, M., Jorgensen, E.M., Bastiani, M.J., Axons break in animals lacking β-spectrin (2007) J. Cell Biol, 176, pp. 269-275
  • Han, B., Zhou, R., Xia, C., Zhuang, X., Structural organization of the actin-spectrin-based membrane skeleton in dendrites and soma of neurons (2017) Proc. Natl. Acad. Sci. U S A, 114, pp. E6678-E6685
  • He, J., Zhou, R., Wu, Z., Carrasco, M.A., Kurshan, P.T., Farley, J.E., Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species (2016) Proc. Natl. Acad. Sci. U S A, 113, pp. 6029-6034
  • Huang, Y.M., Rasband, M.N., Organization of the axon initial segment: actin like a fence (2016) J. Cell Biol, 215, pp. 9-11
  • Huang, C.Y.-M., Zhang, C., Ho, T.S.-Y., Oses-Prieto, J., Burlingame, A.L., Lalonde, J., aII spectrin forms a periodic cytoskeleton at the axon initial segment and is required for nervous system function (2017) J. Neurosci, 37, pp. 11311-11322
  • Ikeda, Y., Dick, K.A., Weatherspoon, M.R., Gincel, D., Armbrust, K.R., Dalton, J.C., Spectrin mutations cause spinocerebellar ataxia type 5 (2006) Nat. Genet, 38, pp. 184-190
  • Jones, S.L., Korobova, F., Svitkina, T., Axon initial segment cytoskeleton comprises a multiprotein submembranous coat containing sparse actin filaments (2014) J. Cell Biol, 205, pp. 67-81
  • Kodippili, G.C., Spector, J., Sullivan, C., Kuypers, F.A., Labotka, R., Gallagher, P.G., Imaging of the diffusion of single band 3 molecules on normal and mutant erythrocytes (2009) Blood, 113, pp. 6237-6245
  • Komada, M., Soriano, P., βIV-spectrin regulates sodium channel clustering through ankyrin-G at axon initial segments and nodes of Ranvier (2002) J. Cell Biol, 156, pp. 337-348
  • Krieg, M., Stühmer, J., Cueva, J.G., Fetter, R., Spilker, K., Cremers, D., Genetic defects in β-spectrin and tau sensitize C. elegans axons to movement-induced damage via torque-tension coupling (2017) Elife, 6
  • Lai, L., Cao, J., Spectrins in axonal cytoskeletons: dynamics revealed by extensions and fluctuations (2014) J. Chem. Phys, 141, p. 15101
  • Leite, S.C.C., Sampaio, P., Sousa, V.F.F., Nogueira-Rodrigues, J., Pinto-Costa, R., Peters, L.L.L., The actin-binding protein α-adducin is required for maintaining axon diameter (2016) Cell Rep, 15, pp. 490-498
  • Leterrier, C., Potier, J., Caillol, G., Debarnot, C., Rueda Boroni, F., Dargent, B., Nanoscale architecture of the axon initial segment reveals an organized and robust scaffold (2015) Cell Rep, 13, pp. 2781-2793
  • Leterrier, C., Vacher, H., Fache, M.-P., D'Ortoli, S.A., Castets, F., Autillo-Touati, A., End-binding proteins EB3 and EB1 link microtubules to ankyrin G in the axon initial segment (2011) Proc. Natl. Acad. Sci. U S A, 108, pp. 8826-8831
  • Lux, S.E., IV, Anatomy of the red cell membrane skeleton: unanswered questions (2016) Blood, 127, pp. 187-199
  • Maniar, T.A., Kaplan, M., Wang, G.J., Shen, K., Wei, L., Shaw, J.E., UNC-33 (CRMP) and ankyrin organize microtubules and localize kinesin to polarize axon-dendrite sorting (2011) Nat. Neurosci, 15, pp. 48-56
  • Parkinson, N.J., Olsson, C.L., Hallows, J.L., McKee-Johnson, J., Keogh, B.P., Noben-Trauth, K., Mutant α-spectrin 4 causes auditory and motor neuropathies in quivering mice (2001) Nat. Genet, 29, pp. 61-65
  • Peterson, J.R., Mitchison, T.J., Review small molecules, big impact: a history of chemical inhibitors and the cytoskeleton (2002) Chem. Biol, 9, pp. 1275-1285
  • Qu, Y., Hahn, I., Webb, S.E.D., Pearce, S.P., Prokop, A., Periodic actin structures in neuronal axons are required to maintain microtubules (2017) Mol. Biol. Cell, 28, pp. 296-308
  • Scherlach, K., Boettger, D., Remme, N., Hertweck, C., The chemistry and biology of cytochalasans (2010) Nat. Prod. Rep, 27, pp. 869-886
  • Shen, B.W., Josephs, R., Steck, T.L., Ultrastructure of the intact skeleton of the human erythrocyte membrane (1986) J. Cell Biol, 102, pp. 997-1006
  • Sidenstein, S.C., D'Este, E., Böhm, M.J., Danzl, J.G., Belov, V.N., Hell, S.W., Multicolour multilevel STED nanoscopy of actin/spectrin organization at synapses (2016) Sci. Rep, 6, p. 26725
  • Tomishige, M., Sako, Y., Kusumi, A., Regulation mechanism of the lateral diffusion of band 3 in erythrocyte membranes by the membrane skeleton (1998) J. Cell Biol, 142, pp. 989-1000
  • Unsain, N., Bordenave, M.D., Martinez, G.F., Jalil, S., von Bilderling, C., Barabas, F.M., Remodeling of the actin/spectrin membrane-associated periodic skeleton, growth cone collapse and F-actin decrease during axonal degeneration (2018) Sci. Rep, 8, p. 6002
  • Valakh, V., Frey, E., Babetto, E., Walker, L.J., DiAntonio, A., Cytoskeletal disruption activates the DLK/JNK pathway, which promotes axonal regeneration and mimics a preconditioning injury (2015) Neurobiol. Dis, 77, pp. 13-25
  • Winder, S.J., Ayscough, K.R., Actin-binding proteins (2005) J. Cell Sci, 118, pp. 651-654
  • Xu, K., Zhong, G., Zhuang, X., Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons (2013) Science, 339, pp. 452-456
  • Zhang, Y., Abiraman, K., Li, H., Pierce, D.M., Tzingounis, A.V., Lykotrafitis, G., Modeling of the axon membrane skeleton structure and implications for its mechanical properties (2017) PLoS Comput. Biol, 13
  • Zhang, C., Susuki, K., Zollinger, D.R., Dupree, J.L., Rasband, M.N., Membrane domain organization of myelinated axons requires a II spectrin (2013) J. Cell Biol, 203, pp. 437-443
  • Zhong, G., He, J., Zhou, R., Lorenzo, D., Babcock, H.P., Bennett, V., Developmental mechanism of the periodic membrane skeleton in axons (2014) Elife, 3

Citas:

---------- APA ----------
Unsain, N., Stefani, F.D. & Cáceres, A. (2018) . The actin/spectrin membrane-associated periodic skeleton in neurons. Frontiers in Synaptic Neuroscience, 10(MAY).
http://dx.doi.org/10.3389/fnsyn.2018.00010
---------- CHICAGO ----------
Unsain, N., Stefani, F.D., Cáceres, A. "The actin/spectrin membrane-associated periodic skeleton in neurons" . Frontiers in Synaptic Neuroscience 10, no. MAY (2018).
http://dx.doi.org/10.3389/fnsyn.2018.00010
---------- MLA ----------
Unsain, N., Stefani, F.D., Cáceres, A. "The actin/spectrin membrane-associated periodic skeleton in neurons" . Frontiers in Synaptic Neuroscience, vol. 10, no. MAY, 2018.
http://dx.doi.org/10.3389/fnsyn.2018.00010
---------- VANCOUVER ----------
Unsain, N., Stefani, F.D., Cáceres, A. The actin/spectrin membrane-associated periodic skeleton in neurons. Front. Synaptic Neurosci. 2018;10(MAY).
http://dx.doi.org/10.3389/fnsyn.2018.00010