Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Behavioral observations suggest that multiple sensory elements can be maintained for a short time, forming a perceptual buffer which fades after a few hundred milliseconds. Only a subset of this perceptual buffer can be accessed under top-down control and broadcasted to working memory and consciousness. In turn, single-cell studies in awake-behaving monkeys have identified two distinct waves of response to a sensory stimulus: a first transient response largely determined by stimulus properties and a second wave dependent on behavioral relevance, context and learning. Here we propose a simple biophysical scheme which bridges these observations and establishes concrete predictions for neurophsyiological experiments in which the temporal interval between stimulus presentation and top-down allocation is controlled experimentally. Inspired in single-cell observations, the model involves a first transient response and a second stage of amplification and retrieval, which are implemented biophysically by distinct operational modes of the same circuit, regulated by external currents. We explicitly investigated the neuronal dynamics, the memory trace of a presented stimulus and the probability of correct retrieval, when these two stages were bracketed by a temporal gap. The model predicts correctly the dependence of performance with response times in interference experiments suggesting that sensory buffering does not require a specific dedicated mechanism and establishing a direct link between biophysical manipulations and behavioral observations leading to concrete predictions. © 2009 Zylberberg, Dehaene, Mindlin and Sigman.

Registro:

Documento: Artículo
Título:Neurophysiological bases of exponential sensory decay and top-down memory retrieval: A model
Autor:Zylberberg, A.; Dehaene, S.; Mindlin, G.B.; Sigman, M.
Filiación:Physics Department, University of Buenos Aires, Buenos Aires, Argentina
Inserm-CEA Cognitive Neuroimaging Unit, CEA/SAC/DSV/DRM/NeuroSpin, Gif sur Yvette, France
Collège de France, Paris, France
Palabras clave:Attentional blink; Attractor networks; Dual-task interference; Iconic memory; Stochastic processes; Attentional blinks; Attractor networks; Behavioral observation; Dual-task interference; External currents; Neuronal dynamics; Operational modes; Temporal intervals; Concretes; Experiments; Forecasting; Random processes; Transient analysis
Año:2009
Volumen:3
Número:MAR
DOI: http://dx.doi.org/10.3389/neuro.10.004.2009
Título revista:Frontiers in Computational Neuroscience
Título revista abreviado:Front. Comput. Neurosci.
ISSN:16625188
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16625188_v3_nMAR_p_Zylberberg

Referencias:

  • Abbott, L.F., Chance, F.S., Drivers and modulators from pushpull and balanced synaptic input (2005) Prog. Brain Res., 149, p. 147
  • Amit, D.J., Brunel, N., Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex (1997) Cereb. Cortex, 7, pp. 237-252
  • Ardid, S., Wang, X.J., Compte, A., An integrated microcircuit model of attentional processing in the neocortex (2007) J. Neurosci., 27, pp. 8486-8495
  • Averbach, E., Coriell, A.S., Short-term memory in vision (1961) Bell Syst. Tech. J., 40, pp. 309-328
  • Baars, B.J., (1989) A Cognitive Theory of Consciousness, , Cambridge, Cambridge University Press
  • Bisley, J.W., Goldberg, M.E., Neural correlates of attention and distractibility in the lateral intraparietal area (2006) J. Neurophysiol., 95, pp. 1696-1717
  • Bowman, H., Wyble, B., The simultaneous type, serial token model of temporal attention and working memory (2007) Psychol. Rev., 114, pp. 38-70
  • Brunel, N., Wang, X.J., Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition (2001) J. Comput. Neurosci., 11, pp. 63-85
  • Chelazzi, L., Duncan, J., Miller, E.K., Desimone, R., Responses of neurons in inferior temporal cortex during memory-guided visual search (1998) J. Neurophysiol., 80, pp. 2918-2940
  • Chelazzi, L., Miller, E.K., Duncan, J., Desimone, R., A neural basis for visual search in inferior temporal cortex (1993) Nature, 363, pp. 345-347
  • Chow, S.L., Iconic memory, location information, and partial report (1986) J. Exp. Psychol. Hum. Percept. Perform., 12, pp. 455-465
  • Chun, M.M., Potter, M.C., A two-stage model for multiple target detection in rapid serial visual presentation (1995) J. Exp. Psychol. Hum. Percept. Perform., 21, pp. 109-127
  • Coltheart, M., Iconic memory and visible persistence (1980) Percept. Psychophys., 27, pp. 183-228
  • Compte, A., Brunel, N., Goldman-Rakic, P.S., Wang, X.J., Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model (2000) Cereb. Cortex, 10, pp. 910-923
  • Deco, G., Rolls, E.T., Attention and working memory: A dynamical model of neuronal activity in the prefrontal cortex (2003) Eur. J. Neurosci., 18, pp. 2374-2390
  • Dehaene, S., Kerszberg, M., Changeux, J.P., A neuronal model of a global workspace in effortful cognitive tasks (1998) Proc. Natl. Acad. Sci. U.S.A., 95, pp. 14529-14534
  • Dehaene, S., Sergent, C., Changeux, J.P., A neuronal network model linking subjective reports and objective physiological data during conscious perception (2003) Proc. Natl. Acad. Sci. U.S.A., 100, pp. 8520-8525
  • Dell'Acqua, R., Jolicoeur, P., Pascali, A., Pluchino, P., Short-term consolidation of individual identities leads to lag-1 sparing (2007) J. Exp. Psychol. Hum. Percept. Perform., 33, pp. 593-609
  • Duncan, J., Ward, R., Shapiro, K., Direct measurement of attentional dwell time in human vision (1994) Nature, 369, pp. 313-315
  • Durstewitz, D., Seamans, J.K., Sejnowski, T.J., Neurocomputational models of working memory (2000) Nat. Neurosci., 3, pp. 1184-1191
  • Dux, P.E., Ivanoff, J., Asplund, C.L., Marois, R., Isolation of a central bottleneck of information processing with time-resolved FMRI (2006) Neuron, 52, pp. 1109-1120
  • Ermentrout, B., Complex dynamics in winner-take-all neural nets with slow inhibition (1992) Neural Netw., 5, pp. 415-431
  • Fragopanagos, N., Kockelkoren, S., Taylor, J.G., A neurodynamic model of the attentional blink (2005) Cogn. Brain Res., 24, pp. 568-586
  • Fusi, S., Asaad, W.F., Miller, E.K., Wang, X.J., A neural circuit model of flexible sensorimotor mapping: Learning and forgetting on multiple timescales (2007) Neuron, 54, pp. 319-333
  • Giesbrecht, B., Di Lollo, V., Beyond the attentional blink: Visual masking by object substitution (1998) J. Exp. Psychol. Hum. Percept Perform, 24, pp. 1454-1466
  • Gilbert, C.D., Sigman, M., Brain states: Top-down influences in sensory processing (2007) Neuron, 54, pp. 677-696
  • Graziano, M., Sigman, M., The dynamics of sensory buffers: Geometric, spatial, and experience-dependent shaping of iconic memory (2008) J. Vis., 8, pp. 1-13
  • Izhikevich, E.M., Edelman, G.M., Large-scale model of mammalian thalamocortical systems (2008) Proc. Natl. Acad. Sci. U.S.A., 105, p. 3593
  • Jiang, Y., Saxe, R., Kanwisher, N., Functional magnetic resonance imaging provides new constraints on theories of the psychological refractory period (2004) Psychol. Sci., 15, pp. 390-396
  • Jolicoeur, P., Concurrent responseselection demands modulate the attentional blink (1999) J. Exp. Psychol. Hum. Percept. Perform., 25, pp. 1097-1113
  • Joseph, J.S., Chun, M.M., Nakayama, K., Attentional requirements in a preattentive feature search task (1997) Nature, 387, pp. 805-807
  • Kang, K., Shelley, M., Sompolinsky, H., Mexican hats and pinwheels in visual cortex (2003) Proc. Natl. Acad. Sci. U.S.A., 100, pp. 2848-2853
  • Knill, D.C., Pouget, A., The Bayesian brain: The role of uncertainty in neural coding and computation (2004) Trends Neurosci., 27, pp. 712-719
  • Lamme, V.A., Roelfsema, P.R., The distinct modes of vision offered by feedforward and recurrent processing (2000) Trends Neurosci., 23, pp. 571-579
  • Lamme, V.A., Super, H., Landman, R., Roelfsema, P.R., Spekreijse, H., The role of primary visual cortex (V1) in visual awareness (2000) Vision Res., 40, pp. 1507-1521
  • Lamme, V.A.F., The neurophysiology of figure-hround segregation in primary visual cortex (1995) J. Neurosci., 15, pp. 1605-1615
  • Lamme, V.A.F., Zipser, K., Spekreijse, H., Figure-ground activity in primary visual cortex is suppressed by anesthesia (1998) Proc. Natl. Acad. Sci. U.S.A., 95, pp. 3263-3268
  • Lee, T.S., Yang, C.F., Romero, R.D., Mumford, D., Neural activity in early visual cortex reflects behavioral experience and higher-order perceptual saliency (2002) Nat. Neurosci., 5, pp. 589-597
  • Li, W., Piech, V., Gilbert, C.D., Perceptual learning and top-down influences in primary visual cortex (2004) Nat. Neurosci., 7, pp. 651-657
  • Li, W., Piech, V., Gilbert, C.D., Contour saliency in primary visual cortex (2006) Neuron, 50, pp. 951-962
  • Lo, C.C., Wang, X.J., Corticobasal ganglia circuit mechanism for a decision threshold in reaction time tasks (2006) Nat. Neurosci., 9, pp. 956-963
  • Loftus, G.R., Duncan, J., Gehrig, P., On the time course of perceptual information that results from a brief visual presentation (1992) J. Exp. Psychol. Hum. Percept. Perform., 18, pp. 530-549. , Discussion 550-561
  • Lu, Z.L., Neuse, J., Madigan, S., Dosher, B.A., Fast decay of iconic memory in observers with mild cognitive impairments (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 1797-1802
  • McHens, C.K., Romo, R., Brody, C.D., Flexible control of mutual inhibition: A neural model of twointerval discrimination (2005) Science, 307, pp. 1121-1124
  • Mongillo, G., Barak, O., Tsodyks, M., Synaptic theory of working memory (2008) Science, 319, pp. 1543-1546
  • Nieuwenhuis, S., Gilzenrat, M.S., Holmes, B.D., Cohen, J.D., The role of the locus coeruleus in mediating the attentional blink: A neurocomputational theory (2005) J. Exp. Psychol. Gen., 134, pp. 291-307
  • Pashler, H., Dual-task interference in simple tasks: Data and theory (1994) Psychol. Bull., 116, pp. 220-244
  • Pashler, H., Johnston, J.C., Chronometric evidence for central postponement in temporally overlapping tasks (1989) Q. J. Exp. Psychol., 41 A, pp. 19-45
  • Pashler, H., Johnston, J.C., (1998) Attentional limitations in dualtask performance, pp. 155-189. , In Attention, H. Pashler, ed. (Hove, Psychology Press)
  • Pouget, A., Dayan, P., Zemel, R.S., Inference and computation with population codes (2003) Annu. Rev. Neurosci., 26, pp. 381-410
  • Raymond, J.E., Shapiro, K.L., Arnell, K.M., Temporary suppression of visual processing in an RSVP task: An attentional blink? (1992) J. Exp. Psychol. Hum. Percept. Perform., 18, pp. 849-860
  • Renart, A., Brunel, N., Wang, X.J., Mean-field theory of irregularly spiking neuronal populations and working memory in recurrent cortical networks (2004) Computational Neuroscience: A Comprehensive Approach, pp. 431-490. , J. Feng. ed. (Boca Raton, Chapman and Hall)
  • Roelfsema, P.R., Lamme, V.A., Spekreijse, H., The implementation of visual routines (2000) Vision Res., 40, pp. 1385-1411
  • Roelfsema, P.R., Lamme, V.A.F., Spekreijse, H., Object-based attention in the primary visual cortex of the macaque monkey (1998) Nature, 395, pp. 376-381
  • Rolls, E.T., Functions of the primate temporal lobe cortical visual areas in invariant visual object and face recognition (2000) Neuron, 27, pp. 205-218
  • Ruff, C.C., Kristjansson, A., Driver, J., Readout from iconic memory and selective spatial attention involve similar neural processes (2007) Psychol. Sci., 18, pp. 901-909
  • Shapiro, K., Schmitz, F., Martens, S., Hommel, B., Schnitzler, A., Resource sharing in the attentional blink (2006) Neuroreport, 17, pp. 163-166
  • Sigman, M., Dehaene, S., Brain mechanisms of serial and parallel processing during dual-task performance (2008) J. Neurosci., 28, pp. 7585-7598
  • Smith, M.C., Theories of the psychological refractory period (1967) Psychol. Bull., 67, pp. 202-213
  • Sperling, G., The information available in brief visual presentations (1960) Psychol. Monogr., 74, pp. 1-29
  • Sternberg, S., The discovery of processing stages: Extension of Donders' method (1969) Attention and Performance II, pp. 276-315. , W. G. Koster, ed. (Amsterdam, North Holland)
  • Strogatz, S.H., (1994) Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, , New York, Perseus Books
  • Telford, C.W., The refractory phase of voluntary and associative responses (1931) J. Exp. Psychol., 14, pp. 1-36
  • Tombu, M., Jolicoeur, P., A central capacity sharing model of dual-task performance (2003) J. Exp. Psychol. Hum. Percept. Perform., 29, pp. 3-18
  • Tombu, M., Jolicoeur, P., Testing the predictions of the central capacity sharing model (2005) J. Exp. Psychol. Hum. Percept. Perform., 31, pp. 790-802
  • Tovee, M.J., Rolls, E.T., Treves, A., Bellis, R.P., Information encoding and the responses of single neurons in the primate temporal visual cortex (1993) J. Neurophysiol., 70, pp. 640-654
  • Turvey, M.T., Kravetz, S., Retrieval from iconic memory with shape as the selection criterion (1970) Percept. Psychophys., 8, pp. 171-172
  • Vinckier, F., Dehaene, S., Jobert, A., Dubus, J.P., Sigman, M., Cohen, L., Hierarchical coding of letter strings in the ventral stream: Dissecting the inner organization of the visual word-form system (2007) Neuron, 55, pp. 143-156
  • Wang, D., Terman, D., Locally excitatory globally inhibitory oscillator networks (1995) IEEE Trans. Neural Netw., 6, pp. 283-286
  • Wang, X.J., Probabilistic decision making by slow reverberation in cortical circuits (2002) Neuron, 36, pp. 955-968
  • Wong, K.F., Wang, X.J., A recurrent network mechanism of time integration in perceptual decisions (2006) J. Neurosci., 26, pp. 1314-1328
  • Wong, K.F.E., The relationship between attentional blink and psychological refractory period (2002) J. Exp. Psychol. Hum. Percept. Perform., 28, pp. 54-71

Citas:

---------- APA ----------
Zylberberg, A., Dehaene, S., Mindlin, G.B. & Sigman, M. (2009) . Neurophysiological bases of exponential sensory decay and top-down memory retrieval: A model. Frontiers in Computational Neuroscience, 3(MAR).
http://dx.doi.org/10.3389/neuro.10.004.2009
---------- CHICAGO ----------
Zylberberg, A., Dehaene, S., Mindlin, G.B., Sigman, M. "Neurophysiological bases of exponential sensory decay and top-down memory retrieval: A model" . Frontiers in Computational Neuroscience 3, no. MAR (2009).
http://dx.doi.org/10.3389/neuro.10.004.2009
---------- MLA ----------
Zylberberg, A., Dehaene, S., Mindlin, G.B., Sigman, M. "Neurophysiological bases of exponential sensory decay and top-down memory retrieval: A model" . Frontiers in Computational Neuroscience, vol. 3, no. MAR, 2009.
http://dx.doi.org/10.3389/neuro.10.004.2009
---------- VANCOUVER ----------
Zylberberg, A., Dehaene, S., Mindlin, G.B., Sigman, M. Neurophysiological bases of exponential sensory decay and top-down memory retrieval: A model. Front. Comput. Neurosci. 2009;3(MAR).
http://dx.doi.org/10.3389/neuro.10.004.2009