Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Introduction: Neohelice granulata crabs live in mudflats where they prey upon smaller crabs. Predatory behavior can be elicited in the laboratory by a dummy moving at ground level in an artificial arena. Previous research found that crabs do not use apparent dummy size nor its retinal speed as a criterion to initiate attacks, relying instead on actual size and distance to the target. To estimate the distance to an object on the ground, Neohelice could rely on angular declination below the horizon or, since they are broad-fronted with eye stalks far apart, on stereopsis. Unlike other animals, binocular vision does not widen the visual field of crabs since they already cover 360◦ monocularly. There exist nonetheless areas of the eye with increased resolution. Methods: We tested how predatory responses towards the dummy changed when animals’ vision was monocular (one eye occluded by opaque black paint) compared to binocular. Results: Even though monocular crabs could still perform predatory behaviors, we found a steep reduction in the number of attacks. Predatory performance defined by the probability of completing the attacks and the success rate (the probability of making contact with the dummy once the attack was initiated) was impaired too. Monocular crabs tended to use frontal, ballistic jumps (lunge behavior) less, and the accuracy of those attacks was reduced. Monocular crabs used prey interception (moving toward the dummy while it approached the crab) more frequently, favoring attacks when the dummy was ipsilateral to the viewing eye. Instead, binocular crabs’ responses were balanced in the right and left hemifields. Both groups mainly approached the dummy using the lateral field of view, securing speed of response. Conclusion: Although two eyes are not strictly necessary for eliciting predatory responses, binocularity is associated with more frequent and precise attacks.

Registro:

Documento: Artículo
Título:Predatory behavior under monocular and binocular conditions in the semiterrestrial crab Neohelice granulata
Autor:Harper, Thomas; Nemirovsky, Sergio Iván; Tomsic, Daniel; Sztarker, Julieta
Filiación:Universidad de Buenos Aires. Departamento de Fisiología, Biología Molecular y Celular; Argentina
Universidad de Buenos Aires - CONICET. Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE); Argentina
Universidad de Buenos Aires - CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN); Argentina
Idioma:eng
Palabras clave:Binocular Integration; Eye Occlusion; Crustacean; Predatory Strategy; Stereopsis
Año:2023
Volumen:17
Página de inicio:1
Página de fin:11
DOI: http://dx.doi.org/10.3389/fnbeh.2023.1186518
Título revista:Frontiers in Behavioral Neuroscience
Título revista abreviado:Front. Behav. Neurosci.
ISSN:16625153
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_16625153_v17_n_p1_Harper.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16625153_v17_n_p1_Harper

Referencias:

  • Barnatan, Y., Tomsic, D., Sztarker, J. (2019). Unidirectional optomotor responses and eye dominance in two species of crabs. Front. Physiol. 10:586. 10.3389/fphys.2019.00586
  • Bas, C., Lancia, J. (2020). "Feeding ecology and diet. Chapter 14", in Neohelice Granulata, a Model Species for Studies on Crustaceans, Vol. 1, eds Luppi, T., Rodriguez, E. (Newcastle upon Tyne: Cambridge Scholars Publishing).
  • Bates, D., Mächler, M., Bolker, B., Walker, S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67 1-48. 10.18637/jss.v067.i01
  • Bauer, T. (1981). Prey capture and structure of the visual space of an insect that hunts by sight on the litter layer (Notiophilus biguttatus F., Carabidae, Coleoptera). Behav. Ecol. Sociobiol. 8 91-97. 10.1007/BF00300820
  • Burkhardt, D., Darnhofer-Demar, B., Fischer, K. (1973). Zum binokularen entfernungssehen der insekten. J. Comp. Physiol. 87 165-188. 10.1007/BF01352159
  • Daleo, P., Ribeiro, P., Iribarne, O. (2003). The SW Atlantic burrowing crab Chasmagnathus granulatus Dana affects the distribution and survival of the fiddler crab Uca uruguayensis Nobili. J. Exp. Mar. Biol. Ecol. 291 255-267. 10.1016/S0022-0981(03)00140-0
  • de Astrada, M. B., Bengochea, M., Medan, V., Tomsic, D. (2012). Regionalization in the eye of the grapsid crab Neohelice granulata (=Chasmagnathus granulatus): Variation of resolution and facet diameters. J. Comp. Physiol A Neuroethol. Sens. Neural. Behav. Physiol. 198 173-180. 10.1007/s00359-011-0697-7
  • Feord, R. C., Sumner, M. E., Pusdekar, S., Kalra, L., Gonzalez-Bellido, P. T., Wardill, T. J. (2020). Cuttlefish use stereopsis to strike at prey. Sci. Adv. 6:eaay6036. 10.1126/sciadv.aay6036
  • Gancedo, B., Salido, C., Tomsic, D. (2020). Visual determinants of prey chasing behaviour in a mudflat crab. J. Exp. Biol. 223:jeb217299. 10.1242/jeb.217299
  • Hemmi, J. M., Zeil, J. (2003). Burrow surveillance in fiddler crabs II. The sensory cues. J. Exp. Biol. 206 3951-3961. 10.1242/jeb.00636
  • Land, M., Layne, J. (1995). The visual control of behaviour in fiddler crabs. J. Comp. Physiol. A 177 91-103. 10.1007/BF00243401
  • Layne, J., Land, M., Zeil, J. (1997). Fiddler crabs use the visual horizon to distinguish predators from conspecifics: A review of the evidence. J. Mar. Biol. Assoc. U. K. 77 43-54. 10.1017/S0025315400033774
  • Lenth, R. V. (2022). emmeans: Estimated Marginal Means, aka Least-Squares Means. Available online at: https://CRAN.R-project.org/package=emmeans (accessed March 08, 2023).
  • Maldonado, H., Levin, L., Pita, J. C. B. (1967). Hit distance and the predatory strike of the praying mantis. Z. Für Vgl. Physiol. 56 237-257. 10.1007/BF00333669
  • Maldonado, H., Rodriguez, E. (1972). Depth perception in the praying mantis. Physiol. Behav. 8 751-759. 10.1016/0031-9384(72)90107-2
  • Medan, V., Berón De Astrada, M., Scarano, F., Tomsic, D. (2015). A network of visual motion-sensitive neurons for computing object position in an arthropod. J. Neurosci. 35 6654-6666. 10.1523/JNEUROSCI.4667-14.2015
  • Nityananda, V., Read, J. C. A. (2017). Stereopsis in animals: Evolution, function and mechanisms. J. Exp. Biol. 220 2502-2512. 10.1242/jeb.143883
  • Nityananda, V., Tarawneh, G., Rosner, R., Nicolas, J., Crichton, S., Read, J. (2016). Insect stereopsis demonstrated using a 3D insect cinema. Sci. Rep. 6:18718. 10.1038/srep18718
  • Olberg, R., Worthington, A., Fox, J., Bessette, C., Loosemore, M. (2005). Prey size selection and distance estimation in foraging adult dragonflies. J. Comp. Physiol A Neuroethol. Sens. Neural. Behav. Physiol. 191 791-797. 10.1007/s00359-005-0002-8
  • Oliva, D., Tomsic, D. (2012). Visuo-motor transformations involved in the escape response to looming stimuli in the crab Neohelice (=Chasmagnathus) granulata. J. Exp. Biol. 215 3488-3500. 10.1242/jeb.070755
  • Ooi, T. L., Wu, B., He, Z. J. (2001). Distance determined by the angular declination below the horizon. Nature 414 197-200. 10.1038/35102562
  • R Core Team (2022). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
  • Read, J. C. A. (2021). Binocular vision and stereopsis across the animal Kingdom. Annu. Rev. Vis. Sci. 7 389-415. 10.1146/annurev-vision-093019-113212
  • Rosner, R., von Hadeln, J., Salden, T., Homberg, U. (2017). Anatomy of the lobula complex in the brain of the praying mantis compared to the lobula complexes of the locust and cockroach. J. Comp. Neurol. 525 2343-2357. 10.1002/cne.24208
  • Rossel, S. (1983). Binocular stereopsis in an insect. Nature 302 821-822. 10.1038/302821a0
  • Salido, C. A., Gancedo, B., Tomsic, D. (2023). To escape or to pursue: Opposite decision- making concerning a single moving object is influenced by starvation and sex. J. Exp. Biol. 226:jeb245297. 10.1242/jeb.245297
  • Scarano, F., Sztarker, J., Medan, V., Berón de Astrada, M., Tomsic, D. (2018). Binocular neuronal processing of object motion in an arthropod. J. Neurosci. 38 6933-6948. 10.1523/JNEUROSCI.3641-17.2018
  • Schröder, R., Linkem, C. N., Rivera, J. A., Butler, M. A. (2018). Should I stay or should I go? Perching damselfly use simple colour and size cues to trigger flight. Anim. Behav. 145 29-37. 10.1016/j.anbehav.2018.08.015
  • (2020). Binocular encoding in the damselfly pre-motor target tracking system. Curr. Biol. 30 645-656.e4. 10.1016/j.cub.2019.12.031
  • Sztarker, J. (2000). Interneuronas Monoculares y Binoculares: Indicios Funcionales de la Organización Circuital del Sistema Visual en el Cangrejo Chasmagnathus. Buenos Aires: Universidad de Buenos Aires.
  • Sztarker, J., Tomsic, D. (2004). Binocular visual integration in the crustacean nervous system. J. Comp. Physiol A Neuroethol. Sens. Neural. Behav. Physiol. 190 951-962. 10.1007/s00359-004-0551-2
  • Sztarker, J., Tomsic, D. (2008). Neuronal correlates of the visually-elicited escape response of the crab Chasmagnathus upon seasonal variations, stimuli changes and perceptual alterations. J. Comp. Physiol A Neuroethol. Sens. Neural. Behav. Physiol. 194 587-596. 10.1007/s00359-008-0333-3
  • Tomsic, D., Sztarker, J., Berón de Astrada, M., Oliva, D., Lanza, E. (2017). The predator and prey behaviors of crabs: From ecology to neural adaptations. J. Exp. Biol. 220 2318-2327. 10.1242/jeb.143222
  • Venables, W. N., Ripley, B. D. (2002). Modern Applied Statistics with S. Fourth. New York, NY: Springer.
  • Wardill, T., Fabian, S., Pettigrew, A., Stavenga, D., Nordström, K., Gonzalez-Bellido, P. (2017). A novel interception strategy in a miniature robber fly with extreme visual acuity. Curr. Biol. 27 854-859. 10.1016/j.cub.2017.01.050
  • Zeil, J., Al-Mutairi, M. (1996). The variation of resolution and of ommatidial dimensions in the compound eyes of the fiddler crab Uca lactea annulipes (Ocypodidae, Brachyura, Decapoda). J. Exp. Biol. 199 1569-1577.

Citas:

---------- APA ----------
Harper, Thomas, Nemirovsky, Sergio Iván, Tomsic, Daniel & Sztarker, Julieta (2023) . Predatory behavior under monocular and binocular conditions in the semiterrestrial crab Neohelice granulata. Frontiers in Behavioral Neuroscience, 17, 1-11.
http://dx.doi.org/10.3389/fnbeh.2023.1186518
---------- CHICAGO ----------
Harper, Thomas, Nemirovsky, Sergio Iván, Tomsic, Daniel, Sztarker, Julieta. "Predatory behavior under monocular and binocular conditions in the semiterrestrial crab Neohelice granulata" . Frontiers in Behavioral Neuroscience 17 (2023) : 1-11.
http://dx.doi.org/10.3389/fnbeh.2023.1186518
---------- MLA ----------
Harper, Thomas, Nemirovsky, Sergio Iván, Tomsic, Daniel, Sztarker, Julieta. "Predatory behavior under monocular and binocular conditions in the semiterrestrial crab Neohelice granulata" . Frontiers in Behavioral Neuroscience, vol. 17, 2023, pp. 1-11.
http://dx.doi.org/10.3389/fnbeh.2023.1186518
---------- VANCOUVER ----------
Harper, Thomas, Nemirovsky, Sergio Iván, Tomsic, Daniel, Sztarker, Julieta. Predatory behavior under monocular and binocular conditions in the semiterrestrial crab Neohelice granulata. Front. Behav. Neurosci. 2023;17:1-11.
http://dx.doi.org/10.3389/fnbeh.2023.1186518