Artículo

Grosso, J.P.; Barneto, J.A.; Velarde, R.A.; Pagano, E.A.; Zavala, J.A.; Farina, W.M. "An early sensitive period induces long-lasting plasticity in the honeybee nervous system" (2018) Frontiers in Behavioral Neuroscience. 12
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The effect of early experiences on the brain during a sensitive period exerts a long-lasting influence on the mature individual. Despite behavioral and neural plasticity caused by early experiences having been reported in the honeybee Apis mellifera, the presence of a sensitive period in which associative experiences lead to pronounced modifications in the adult nervous system is still unclear. Laboratory-reared bees were fed with scented food within specific temporal windows and were assessed for memory retention, in the regulation of gene expression related to the synaptic formation and in the olfactory perception of their antennae at 17 days of age. Bees were able to retain a food-odor association acquired 5–8 days after emergence, but not before, and showed better retention than those exposed to an odor at 9–12 days. In the brain, the odor-rewarded experiences that occurred at 5–8 days of age boosted the expression levels of the cell adhesion proteins neurexin 1 (Nrx1) and neuroligin 2 (Nlg2) involved in synaptic strength. At the antennae, the experiences increased the electrical response to a novel odor but not to the one experienced. Therefore, a sensitive period that induces long-lasting behavioral, functional and structural changes is found in adult honeybees. © 2018 Grosso, Barneto, Velarde, Pagano, Zavala and Farina.

Registro:

Documento: Artículo
Título:An early sensitive period induces long-lasting plasticity in the honeybee nervous system
Autor:Grosso, J.P.; Barneto, J.A.; Velarde, R.A.; Pagano, E.A.; Zavala, J.A.; Farina, W.M.
Filiación:Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Behavior; Neurobiology; Plasticity; Sensitive period; Social insect; neurexin; neurexin 1; neuroligin; neuroligin 2; unclassified drug; adult; animal behavior; animal experiment; animal tissue; antenna (organ); Article; controlled study; environmental exposure; food odor; gene expression regulation; honeybee; memory consolidation; nerve cell characteristics and functions; nerve cell plasticity; nervous system electrophysiology; nonhuman; odor; postsynaptic potential; presynaptic potential; protein expression; reward; smelling; synaptic strength
Año:2018
Volumen:12
DOI: http://dx.doi.org/10.3389/fnbeh.2018.00011
Título revista:Frontiers in Behavioral Neuroscience
Título revista abreviado:Front. Behav. Neurosci.
ISSN:16625153
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16625153_v12_n_p_Grosso

Referencias:

  • Arenas, A., Farina, W.M., Age and rearing environment interact in the retention of early olfactory memories in honeybees (2008) J. Comp. Physiol. a Neuroethol. Sens. Neural Behav. Physiol., 194, pp. 629-640
  • Arenas, A., Fernández, V.M., Farina, W.M., Floral scents within the colony affect long-term foraging preferences in honeybees (2008) Apidologie, 39, pp. 714-722
  • Arenas, A., Fernández, V.M., Farina, W.M., Associative learning during early adultoohd enhances later memory retention in honeybees (2009) Plos One, 4
  • Arenas, A., Giurfa, M., Farina, W.M., Sandoz, J.C., Early olfactory experience modifies neural activity in the antennal lobe of a social insect at the adult stage (2009) Eur. J. Neurosci., 30, pp. 1498-1508
  • Arenas, A., Giurfa, M., Sandoz, J.C., Hourcade, B., Devaud, J.M., Farina, W.M., Early olfactory experience induces structural changes in the primary olfactory center of an insect brain (2012) Eur. J. Neurosci., 35, pp. 682-690
  • Arenas, A., Ramírez, G.P., Balbuena, M.S., Farina, W.M., Behavioral and neural plasticity caused by early social experiences: The case of the honeybee (2013) Front. Physiol., 4, p. 41
  • Baayen, R.H., Davidson, D.J., Bates, D.M., Mixed-effects modeling with crossed random effects for subjects and items (2008) J. Mem. Lang., 59, pp. 390-412
  • Bates, D., Maechler, M., (2010) Lme4: Linear Mixed-Effects Models Using S4 Classes. R Package Version 0.999375–36/r1083, , http://R-Forge.R-project.org/projects/lme4/, Available online at
  • Behrends, A., Scheiner, R., Evidence for associative learning in newly emerged honey bees (Apis mellifera) (2009) Anim. Cogn., 12, pp. 249-255
  • Benson, D.L., Schnapp, L.M., Shapiro, L., Huntley, G.W., Making memories stick: Cell-adhesion molecules in synaptic plasticity (2000) Trends Cell Biol, 10, pp. 473-482
  • Bhagavan, S., Smith, B.H., Olfactory conditioning in the honey bee, Apis mellifera: Effects of odor intensity (1997) Physiol. Behav., 61, pp. 107-117
  • Biosystems, A., (2004) Guide to Performing Relative Quantitation of Gene Expression Using Real-Time Quantitative PCR, , Foster City: Applied Biosystems
  • Biswas, S., Reinhard, J., Oakeshott, J., Russell, R., Srinivasan, M.V., Claudianos, C., Sensory regulation of neuroligins and neurexin I in the honeybee brain (2010) Plos One, 5
  • Biswas, S., Russell, R.J., Jackson, C.J., Vidovic, M., Ganeshina, O., Oakeshott, J.G., Bridging the synaptic gap: Neuroligins and neurexin I in Apis mellifera (2008) Plos One, 3
  • Brenes, J.C., Rodríguez, O., Fornaguera, J., Differential effect of environment enrichment and social isolation on depressive-like behavior, spontaneous activity and serotonin and norepinephrine concentration in prefrontal cortex and ventral striatum (2008) Pharmacol. Biochem. Behav., 89, pp. 85-93
  • Claudianos, C., Lim, J., Young, M., Yan, S., Cristino, A.S., Newcomb, R.D., Odor memories regulate olfactory receptor expression in the sensory periphery (2014) Eur. J. Neurosci., 39, pp. 1642-1654
  • Collins, A., Williams, V., Evans, J., Sperm storage and antioxidative enzyme expression in the honey bee, Apis mellifera (2004) Insect Mol. Biol., 13, pp. 141-146
  • Craig, A.M., Kang, Y., Neurexin-neuroligin signaling in synapse development (2007) Curr. Opin. Neurobiol., 17, pp. 43-52
  • Dean, C., Dresbach, T., Neuroligins and neurexins: Linking cell adhesion, synapse formation and cognitive function (2006) Trends Neurosci, 29, pp. 21-29
  • de Jong, R., Pham-Delègue, M.-H., Electroantennogram responses related to olfactory conditioning in the honey bee (Apis mellifera ligustica) (1991) J. Insect Physiol., 37, pp. 319-324
  • Devaud, J.M., Acebes, A., Ramaswami, M., Ferrús, A., Structural and functional changes in the olfactory pathway of adult Drosophila take place at a critical age (2003) J. Neurobiol., 56, pp. 13-23
  • Dukas, R., Life history of learning: Performance curves of honeybees in the wild (2008) Ethology, 114, pp. 1195-1200
  • Faber, T., Joerges, J., Menzel, R., Associative learning modifies neural representations of odors in the insect brain (1999) Nat. Neurosci., 2, pp. 74-78
  • Fahrbach, S., Robinson, G., Juvenile hormone, behavioral maturation, and brain structure in the honey bee (1996) Dev. Neurosci., 18, pp. 102-114
  • Farina, W.M., Grüter, C., Acosta, L., Mc Cabe, S., Honeybees learn floral odors while receiving nectar from foragers within the hive (2007) Naturwissenschaften, 94, pp. 55-60
  • Farris, S.M., Robinson, G.E., Fahrbach, S.E., Experience-and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee (2001) J. Neurosci., 21, pp. 6395-6404
  • Felsenberg, J., Dombrowski, V., Eisenhardt, D., A role of protein degradation in memory consolidation after initial learning and extinction learning in the honeybee (Apis mellifera) (2012) Learn. Mem., 19, pp. 470-477
  • Frings, H., The loci of olfactory end-organs in the honey-bee, Apis mellifera Linn (1944) J. Exp. Zool., 97, pp. 123-134
  • Galizia, C.G., Kimmerle, B., Physiological and morphological characterization of honeybee olfactory neurons combining electrophysiology, calcium imaging and confocal microscopy (2004) J. Comp. Physiol. a Neuroethol. Sens. Neural Behav. Physiol., 190, pp. 21-38
  • Gascuel, J., Masson, C., Influence of olfactory deprivation on synapse frequency in developing antennal lobe of the honeybee Apis mellifera (1987) Neurosci. Res. Commun, 1, pp. 173-180
  • Gascuel, J., Masson, C., Developmental study of afferented and deafferented bee antennal lobes (1991) J. Neurobiol., 22, pp. 795-810
  • Giurfa, M., Sandoz, J.-C., Invertebrate learning and memory: Fifty years of olfactory conditioning of the proboscis extension response in honeybees (2012) Learn. Mem., 19, pp. 54-66
  • Grüter, C., Acosta, L.E., Farina, W.M., Propagation of olfactory information within the honeybee hive (2006) Behav. Ecol. Sociobiol., 60, pp. 707-715
  • Guerrieri, F., Schubert, M., Sandoz, J.-C., Giurfa, M., Perceptual and neural olfactory similarity in honeybees (2005) Plos Biol., 3, p. e60
  • Hellemans, J., Mortier, G., de Paepe, A., Speleman, F., Vandesompele, J., QBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data (2007) Genome Biol., 8, p. R19
  • Hourcade, B., Perisse, E., Devaud, J.-M., Sandoz, J.-C., Long-term memory shapes the primary olfactory center of an insect brain (2009) Learn. Mem., 16, pp. 607-615
  • Ichikawa, N., Sasaki, M., Importance of social stimuli for the development of learning capability in honeybees (2003) Appl. Entomol. Zool., 38, pp. 203-209
  • Knudsen, E.I., Sensitive periods in the development of the brain and behavior (2004) J. Cogn. Neurosci., 16, pp. 1412-1425
  • Larkin, A., Chen, M.Y., Kirszenblat, L., Reinhard, J., van Swinderen, B., Claudianos, C., Neurexin-1 regulates sleep and synaptic plasticity in Drosophila melanogaster (2015) Eur. J. Neurosci., 42, pp. 2455-2466
  • Lindauer, M., Ein beitrag zur frage der arbeitsteilung im bienenstaat (1952) Z. Vgl. Physiol., 34, pp. 299-345
  • Martinez, A., Farina, W.M., Honeybees modify gustatory responsiveness after receiving nectar from foragers within the hive (2008) Behav. Ecol. Sociobiol., 62, pp. 529-535
  • Masson, C., Arnold, G., Ontogeny, maturation and plasticity of the olfactory system in the workerbee (1984) J. Insect Physiol., 30, pp. 7-14
  • Masson, C., Arnold, G., Organization and plasticity of the olfactory system of the honeybee, Apis mellifera (1987) Neurobiology and Behavior of Honeybees, pp. 280-295. , eds R. Menzel and A. Mercer (Berling: Springer Verlag)
  • Masson, C., Pham-Delègue, M., Fonta, C., Gascuel, J., Arnold, G., Nicolas, G., Recent advances in the concept of adaptation to natural odour signals in the honeybee, Apis mellifera L (1993) Apidologie, 24, p. 169
  • Menzel, R., The honeybee as a model for understanding the basis of cognition (2012) Nat. Rev. Neurosci., 13, pp. 758-768
  • Menzel, R., Muller, U., Learning and memory in honeybees: From behavior to neural substrates (1996) Annu. Rev. Neurosci., 19, pp. 379-404
  • Meyer, A., Galizia, C.G., Elemental and configural olfactory coding by antennal lobe neurons of the honeybee (Apis mellifera) (2012) J. Comp. Physiol. a Neuroethol. Sens. Neural Behav. Physiol, 198, pp. 159-171
  • Michener, C.D., (1974) The Social Behavior of the Bees: A Comparative Study, , Cambridge, MA: Harvard University Press
  • Morgan, S.M., Butz Huryn, V.M., Downes, S.R., Mercer, A.R., The effects of queenlessness on the maturation of the honey bee olfactory system (1998) Behav. Brain Res., 91, pp. 115-126
  • Ramírez, G., Fagundez, C., Grosso, J.P., Argibay, P., Arenas, A., Farina, W.M., Odor experiences during preimaginal stages cause behavioral and neural plasticity in adult honeybees (2016) Front. Behav. Neurosci., 10, p. 105
  • Ray, S., Ferneyhough, B., The effects of age on olfactory learning and memory in the honey bee Apis mellifera (1997) Neuroreport, 8, pp. 789-793
  • (2011) R: A Language and Environment for Statistical Computing, , http://www.R-project.org/, Vienna, Austria: The R Foundation for Statistical Computing. Available online at
  • Reinhard, J., Claudianos, C., Molecular insights into honey bee brain plasticity (2012) Honeybee Neurobiology and Behavior, pp. 359-372. , eds C. G. Galizia, D. Eisenhardt and M. Giurfa (New York, NY: Springer)
  • Ripley, B., Venables, B., Bates, D.M., Hornik, K., Gebhardt, A., Firth, D., (2013) R. Package ‘MASS’, , https://cran.r-project.org/web/packages/MASS/index.html
  • Rösch, G.A., Untersuchungen über die arbeitsteilung im bienenstaat (1925) J. Comp. Physiol. a Neuroethol. Sens. Neural Behav. Physiol, 2, pp. 571-631
  • Sandoz, J., Galizia, C.G., Menzel, R., Side-specific olfactory conditioning leads to more specific odor representation between sides but not within sides in the honeybee antennal lobes (2003) Neuroscience, 120, pp. 1137-1148
  • Sandoz, J., Pham-Delègue, M., Renou, M., Wadhams, L., Asymmetrical generalisation between pheromonal and floral odours in appetitive olfactory conditioning of the honey bee (Apis mellifera L.) (2001) J. Comp. Physiol. a Neuroethol. Sens. Neural Behav. Physiol., 187, pp. 559-568
  • Seeley, T.D., Adaptive significance of the age polyethism schedule in honeybee colonies (1982) Behav. Ecol. Sociobiol., 11, pp. 287-293
  • Takeda, K., Classical conditioned response in the honey bee (1961) J. Insect Physiol., 6, pp. 168-179
  • Wadhams, L., Blight, M., Kerguelen, V., Le Métayer, M., Marion-Poll, F., Masson, C., Discrimination of oilseed rape volatiles by honey bee: Novel combined gas chromatographic-electrophysiological behavioral assay (1994) J. Chem. Ecol., 20, pp. 3221-3231
  • Whitaker, L.R., Degoulet, M., Morikawa, H., Social deprivation enhances VTA synaptic plasticity and drug-induced contextual learning (2013) Neuron, 77, pp. 335-345
  • Williams, G.S., Alaux, C., Costa, C., Csáki, T., Doublet, V., Eisenhardt, D., Standard methods for maintaining adult Apis mellifera (2013) J. Apic. Res, 52, pp. 1-36
  • Wilson, E.O., (1971) The Insect Societies, , Cambridge, MA: Belknap Press of Harvard University Press
  • Winnington, A.P., Napper, R.M., Mercer, A.R., Structural plasticity of identified glomeruli in the antennal lobes of the adult worker honey bee (1996) J. Comp. Neurol, 365, pp. 479-490. , 3<479::aid-cne10>3.0.co;2-m
  • Woo, C.C., Leon, M., Sensitive period for neural and behavioral response development to learned odors (1987) Dev. Brain Res., 36, pp. 309-313
  • Zeng, X., Sun, M., Liu, L., Chen, F., Wei, L., Xie, W., Neurexin-1 is required for synapse formation and larvae associative learning in Drosophila (2007) FEBS Lett, 581, pp. 2509-2516
  • Zwaka, H., Münch, D., Manz, G., Menzel, R., Rybak, J., The circuitry of olfactory projection neurons in the brain of the honeybee, Apis mellifera (2016) Front. Neuroanat., 10, p. 90

Citas:

---------- APA ----------
Grosso, J.P., Barneto, J.A., Velarde, R.A., Pagano, E.A., Zavala, J.A. & Farina, W.M. (2018) . An early sensitive period induces long-lasting plasticity in the honeybee nervous system. Frontiers in Behavioral Neuroscience, 12.
http://dx.doi.org/10.3389/fnbeh.2018.00011
---------- CHICAGO ----------
Grosso, J.P., Barneto, J.A., Velarde, R.A., Pagano, E.A., Zavala, J.A., Farina, W.M. "An early sensitive period induces long-lasting plasticity in the honeybee nervous system" . Frontiers in Behavioral Neuroscience 12 (2018).
http://dx.doi.org/10.3389/fnbeh.2018.00011
---------- MLA ----------
Grosso, J.P., Barneto, J.A., Velarde, R.A., Pagano, E.A., Zavala, J.A., Farina, W.M. "An early sensitive period induces long-lasting plasticity in the honeybee nervous system" . Frontiers in Behavioral Neuroscience, vol. 12, 2018.
http://dx.doi.org/10.3389/fnbeh.2018.00011
---------- VANCOUVER ----------
Grosso, J.P., Barneto, J.A., Velarde, R.A., Pagano, E.A., Zavala, J.A., Farina, W.M. An early sensitive period induces long-lasting plasticity in the honeybee nervous system. Front. Behav. Neurosci. 2018;12.
http://dx.doi.org/10.3389/fnbeh.2018.00011