Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In eusocial insects, experiences acquired during the development have long-term consequences on mature behavior. In the honeybee that suffers profound changes associated with metamorphosis, the effect of odor experiences at larval instars on the subsequent physiological and behavioral response is still unclear. To address the impact of preimaginal experiences on the adult honeybee, colonies containing larvae were fed scented food. The effect of the preimaginal experiences with the food odor was assessed in learning performance, memory retention and generalization in 3–5- and 17–19 day-old bees, in the regulation of their expression of synaptic-related genes and in the perception and morphology of their antennae. Three-five day old bees that experienced 1-hexanol (1-HEX) as food scent responded more to the presentation of the odor during the 1-HEX conditioning than control bees (i.e., bees reared in colonies fed unscented food). Higher levels of proboscis extension response (PER) to 1-HEX in this group also extended to HEXA, the most perceptually similar odor to the experienced one that we tested. These results were not observed for the group tested at older ages. In the brain of young adults, larval experiences triggered similar levels of neurexins (NRXs) and neuroligins (Nlgs) expression, two proteins that have been involved in synaptic formation after associative learning. At the sensory periphery, the experience did not alter the number of the olfactory sensilla placoidea, but did reduce the electrical response of the antennae to the experienced and novel odor. Our study provides a new insight into the effects of preimaginal experiences in the honeybee and the mechanisms underlying olfactory plasticity at larval stage of holometabolous insects. © 2016 Ramírez, Fagundez, Grosso, Argibay, Arenas and Farina.

Registro:

Documento: Artículo
Título:Odor experiences during preimaginal stages cause behavioral and neural plasticity in adult honeybees
Autor:Ramírez, G.; Fagundez, C.; Grosso, J.P.; Argibay, P.; Arenas, A.; Farina, W.M.
Filiación:Laboratorio de Insectos Sociales, IFIBYNE-CONICET, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina
Instituto de Ciencias Básicas y Medicina Experimental, Instituto Universitario del Hospital Italiano, Buenos Aires, Argentina
Palabras clave:Behavior; Electrophysiology; Honeybee; Neurobiology; Preimaginal odor experiences; hexanol; neurexin; neuroligin; adult; animal experiment; animal tissue; antenna (organ); appetite; Article; behavior change; conditioning; controlled study; gene expression; honeybee; larval stage; memory consolidation; nerve cell plasticity; nonhuman; odor recognition test; olfactory memory; sensillum; smelling; state dependent learning; young adult
Año:2016
Volumen:10
Número:JUN
DOI: http://dx.doi.org/10.3389/fnbeh.2016.00105
Título revista:Frontiers in Behavioral Neuroscience
Título revista abreviado:Front. Behav. Neurosci.
ISSN:16625153
CAS:hexanol, 111-27-3, 25917-35-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16625153_v10_nJUN_p_Ramirez

Referencias:

  • Alloway, T.M., Retention of learning through metamorphosis in the grain beetle Tenebrio molitor (1972) Amer. Zool., 12, pp. 471-477
  • Anderson, D.T., Development of holometabolous insects (1972) Developmental Systems: Insects, pp. 95-163. , eds S. J. Counce and C. H. Waddington (New York, NY: Acdemic Press)
  • Arenas, A., Farina, W.F., Age and rearing environment interact in the retention of early olfactory memories in honeybees (2008) J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol., 194, pp. 629-640
  • Arenas, A., Fernández, V.M., Farina, W.M., Floral odor learning within the hive affects honeybees' foraging decisions (2007) Naturwissenschaften, 94, pp. 218-222
  • Arenas, A., Giurfa, M., Farina, W.M., Sandoz, J.C., Early olfactory experience modifies neural activity in the antennal lobe of a social insect at the adult stage (2009) Eur. J. Neurosci., 30, pp. 1498-1508
  • Arenas, A., Giurfa, M., Sandoz, J.C., Hourcade, B., Devaud, J.M., Farina, W.M., Early olfactory experience induces structural changes in the primary olfactory center of an insect brain (2012) Eur. J. Neurosci., 35, pp. 682-690
  • Baayen, R.H., Davidson, D.J., Bates, D.M., Mixed-effects modeling with crossed random effects for subjects and items (2008) J. Mem. Lang., 59, pp. 390-412
  • Balbuena, M.S., Arenas, A., Farina, W.M., Floral scents learned inside the honeybee hive have a long-lasting effect on recruitment (2012) Anim. Behav., 84, pp. 77-83
  • Barron, A.B., Corbet, S.A., Preimaginal conditioning in Drosophila revisited (1999) Anim. Behav., 58, pp. 621-628
  • Bhagavan, S., Smith, B.H., Olfactory conditioning in the honey bee, Apis mellifera: Effects of odor intensity (1997) Physiol. Behav., 61, pp. 107-117
  • Bernays, E.A., Chapman, R.F., Phenotypic plasticity in numbers of antennal chemoreceptors in a grasshopper: Effects of food (1998) J. Comp. Physiol. A., 183, pp. 69-76
  • Biswas, S., Reinhard, J., Oakeshott, J., Russell, R., Srinivasan, M.V., Sensory regulation of neuroligins and neurexin I in the honeybee brain (2010) PLoS One, 5
  • Biswas, S., Russell, R.J., Jackson, C.J., Vidovic, M., Ganeshina, O., Bridging the synaptic gap: Neuroligins andneurexin I in Apis mellifera (2008) PLoS One, 3
  • Blackiston, D.J., Silva Casey, E., Weiss, M.R., Retention of memory through metamorphosis: Can a moth remember what it learned as a caterpillar? (2008) PLoS One, 3
  • Brown, S.M., Napper, R.M., Mercer, A.R., Foraging experience, glomerulus volume and synapse number: A stereological study of the honey bee antennal lobe (2004) J. Neurobiol., 60, pp. 40-50
  • Boelter, A.M., Wilson, W.T., Effect of methyl parathion vapors from contaminated pollen on honey bees (hymenoptera: Apidae) within a hive (1984) Environ. Entomol, 13, pp. 1233-1236
  • Carlin, N.F., Schwartz, P.H., Pre-imaginal experience and nestmate brood recognition in the carpenter ant,Camponotus floridanus (1989) Anim. Behav., 38, pp. 89-95
  • Carlsson, M.A., Anderson, P., Hartlieb, E., Hansson, B.S., Experience-dependent modification of orientational response to olfactory cues in larvae of Spodopteralittoralis (1999) J. Chem. Ecol., 25, pp. 2445-2454
  • Claudianos, C., Lim, J., Young, M., Yan, S., Cristino, A.S., Newcomb, R.D., Odor memories regulate olfactory receptor expression in the sensory periphery (2014) Euro. J. Neurosci., 39, pp. 1642-1654
  • Collins, A.M., Williams, V., Evans, J.D., Sperm storage and antioxidative enzyme expression in the honey bee, Apis mellifera (2004) Insect Mol. Biol., 13, pp. 141-146
  • Consoulas, C., Duch, C., Bayline, R.J., Levine, R.B., Behavioral transformations during metamorphosis: Remodeling of neural and motor systems (2000) Brain Res. Bull., 53, pp. 571-583
  • Craig, A.M., Kang, Y., Neurexin-neuroligin signaling in synapse development (2007) Curr. Opin. Neurobiol., 17, pp. 43-52
  • Crailsheim, K., Trophallactic interactions in the adult honeybee (Apis mellifera L.) (1998) Apidologie, 29, pp. 97-112
  • Davis, N.T., Homberg, U., Dircksen, H., Levine, R.B., Hildebrand, J.G., Crustacean cardioactive peptide-immunoreactive neurons in thehawkmoth Manducasexta and changes in their immune reactivity during postembryonic development (1993) J. Comp. Neurol., 338, pp. 612-627
  • Dean, C., Dresbach, T., Neuroligins and neurexins: Linking cell adhesion, synapse formation and cognitive function (2006) Trends Neurosci., 29, pp. 21-29
  • de Belle, J.S., Heisenberg, M., Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies (1994) Science, 263, pp. 692-695
  • Dobson, H.E.M., Role of flower and pollen aromas in host-plant recognition by solitary bees (1987) Oecologia, 72, pp. 618-623
  • De Jong, R., Pham-Delègue, M.H., Electroantennogram responses related to olfactory conditioning in the honey bee (Apis mellifera ligustica) (1991) J. Insect Physiol., 37, pp. 319-324
  • Deisig, N., Lachnit, H., Giurfa, M., The effect of similarity between elemental stimuli and compounds in olfactory patterning discriminations (2002) Learn.& Mem., 9, pp. 112-121
  • Devaud, J.M., Acebes, A., Ramaswami, M., Ferrús, A., Structural and functional changes in the olfactory pathway of adult Drosophila take place at a critical age (2003) J. Neurobiol., 56, pp. 13-23
  • Farina, W.M., Grüter, C., Diaz, P.C., Social learning of floral odours within the honeybee hive (2005) Proc. Biol. Sci., 272, pp. 1923-1928
  • Farris, S.M., Robinson, G.E., Fahrbach, S.E., Larval and pupal development of the mushroom bodies in the honey bee, Apis mellifera (1999) J. Comp. Neurol., 414, pp. 97-113
  • Farris, S.M., Robinson, G.E., Fahrbach, S.E., Experience- and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee (2001) J. Neurosci., 21, pp. 6395-6404
  • Frings, H., The loci of olfactory end-organs in the honey-bee, Apis mellifera Linn (1944) J. Exp. Zoo., 97, pp. 123-134
  • Gandolfi, M., Mattiacci, L., Dorn, S., Preimaginal learning determines adult response to chemical stimuli in a parasitic wasp (2003) Proc. R. Soc. Lond. B., 270, pp. 2623-2629
  • Gascuel, J., Masson, C., Influence of olfactory deprivation on synapse frequency in developing antennal lobe of the honeybee Apis mellifera (1987) Neurosci. Res. Commun., 1, pp. 173-180
  • Gerber, B., Scherer, S., Neuser, K., Michels, B., Hendel, T., Stocker, R.F., Visual learning in individually assayedDrosophila larvae (2004) J. Exp. Biol., 207, pp. 179-188
  • Gerber, B., Stocker, R.F., The Drosophila larva as a model for studying chemosensation and chemosensory learning: A review (2007) Chem. Senses, 32, pp. 65-89
  • Goyret, J., Farina, W.M., Non-random nectar unloading interactions between foragers and their receivers in the honeybee hive (2005) Naturwissenschaften, 92, pp. 440-443
  • Grüter, C., Acosta, L.E., Farina, W.M., Propagation of olfactory information within the honeybee hive (2006) Behav. Ecol. Sociobiol., 60, pp. 707-715
  • Guerrieri, F., Schubert, M., Sandoz, J.C., Giurfa, M., Perceptual and neural olfactory similarity in honeybees (2005) PLoS Biol., 3
  • Hanser, G., Rembold, H., Analytische und histologische Untersuchungen der Kopf- und Thoraxdrüsen bei der Honigbiene Apis mellifica (1964) Z. Naturforsch, 19, pp. 938-943
  • Hildebrand, J.G., Rössler, W., Tolbert, L.P., Postembryonic development of the olfactory system in the moth Manduca sexta: Primary-afferent control of glomerular development (1997) Semin. Cell Dev. Biol., 8, pp. 163-170
  • Isingrini, M., Lenoir, A., Jaisson, P., Preimaginal learning as a basis of colony-brood recognition in the ant Cataglyphis cursor (1985) Proc. Natl. Acad. Sci. U S A, 82, pp. 8545-8547
  • Knudsen, E.I., Sensitive periods in the developmentof the brain and behavior (2004) J. Cogn. Neurosci., 16, pp. 1412-1425
  • Kunert, K., Crailsheim, K., Sugar and protein in the food for honeybee worker larvae (1987) Chemistry and Biology of Social Insects, pp. 164-165. , ed. J. Eder (Munich: Peperny)
  • Lakes-Harlan, R., Pollack, G.S., Merritt, D.J., From embryo to adult: Anatomy and development of a leg sensory organ in Phormiaregina, Meigen (Insecta: Diptera). II. Development and persistence of sensory neurons (1991) J. Comp. Neurol., 308, pp. 200-208
  • Lorenz, K., Der kumpan in der umwelt des vogels (1935) J. Ornithol., 83, pp. 137-213
  • Lunney, G.H., Using analysis of variance with a dichotomous dependent variable: An empirical study (1970) J. Educ. Meas., 7, pp. 263-269
  • Maechler, M., Bates, D., (2010) Lme4: Linear mixed-effects models usingS4 classes., , R package version 099937-099935
  • Masson, C., Arnold, G., Ontogeny, maturation and plasticity of the olfactory system in the worker bee (1984) J. Insect Physiol., 30, pp. 7-14
  • Masson, C., Arnold, G., Organization and plasticity of the olfactory system of the honeybee, Apis mellifera (1987) Neurobiology and Behavior of Honeybee, pp. 280-295. , eds R. Menzel and A. Mercer (Heidelberg: Springer Verlag Berlin Heidelberg press)
  • Masson, C., Pham-Delegue, M.H., Fonta, C., Gascuel, J., Arnold, G., Nicolas, G., Recent advances in the concept of adaptation to natural odour signals in the honeybee, Apis mellifera L (1993) Apidologie, 24, pp. 169-194
  • Meinertzhagen, I.A., Fly photoreceptor synapses: Their development, evolution and plasticity (1989) J. Neurobiol., 20, pp. 276-294
  • Nixon, H.L., Ribbands, C.R., Food transmission within the honeybee community (1952) Proc. R. Soc. Lond. B Biol. Sci., 140, pp. 43-50
  • Pearce, J.M., A model for stimulus generalization in Pavlovian conditioning (1987) Psychol. Rev., 94, pp. 61-73
  • Ray, S., Survival of olfactory memory through metamorphosis in the fly Musca domestica (1999) Neurosci. Lett., 259, pp. 37-40
  • (2011) R: A Language and Environment Forstatistical Computing., , Vienna: R Foundation for Statistical Computing
  • Reinhard, J., Claudianos, C., Molecular insights into honeybee brain plasticity (2012) Honeybee Neurobiology and Behavior, pp. 359-372. , eds C. G. Galizia, D. Eisenhardt, and M. Giurfa (New York, NY: Springer)
  • Riveros, A.J., Gronenberg, W., Sensory allometry, foraging task specialization and resource exploitation in honeybees (2010) Behav. Ecol. Sociobiol., 64, pp. 955-966
  • Rogers, S., Simpson, S., Experience-dependent changes in the number of chemosensory sensilla on the mouthparts and antennae of (1997) J. Exp. Biol., 200, pp. 2313-2321
  • Rojas, J.C., Wyatt, T.D., The role of pre- and post-imaginal experience in the host-finding and oviposition behaviour of the cabbage moth (1999) Physiol. Entomol., 24, pp. 83-89
  • Sandoz, J.C., Laloi, D., Odoux, J.F., Pham-Delègue, M.H., Olfactory information transfer in the honeybee: Compared efficiency of classical conditioning and early exposure (2000) Anim. Behav., 59, pp. 1025-1034
  • Sandoz, J.C., Pham-Delègue, M.H., Renou, M., Wadhams, L.J., Asymmetrical generalisation between pheromonal and floral odours in appetitive olfactory conditioning of the honey bee (Apis mellifera L.) (2001) J. Comp. Physiol. A, 187, pp. 559-568
  • Seeley, T.D., Adaptive significance of the age polytheism schedule inhoneybee colonies (1982) Behavl. Ecol. Sociobiol, 11, pp. 287-293
  • Scherer, S., Stocker, R.F., Gerber, B., Olfactory learning in individually assayed Drosophila larvae (2003) Learn. and Mem., 10, pp. 217-225
  • Shepherd, D., Smith, S.A., Central projections of persistent larval sensory neurons prefigure adult sensory pathways in the CNS of Drosophila (1996) Development, 122, pp. 2375-2384
  • Shikano, I., Isman, M.B., A sensitive period for larval gustatory learning influences subsequent oviposition choice by the cabbage looper moth (2009) Anim. Behav., 77, pp. 247-251
  • Sigg, D., Thompson, C.M., Mercer, A.R., Activity-dependent changes to the brain and behavior of the honey bee,Apis mellifera L (1997) J. Neurosci, 17, pp. 7148-7156
  • Sokal, R.R., Rohlf, F.J., (2000) Biometry: The Principles and Practice of Statistics in Biological Research., , New York, NY: State University of New York Press
  • Takeda, K., Classical conditioned response in the honey bee (1961) J. Insect. Physiol., 6, pp. 168-179
  • Taylor, B.J., Sexually dimorphic neurons in the terminalia of Drosophila melanogaster: I. Development of sensory neurons in the genital disc during metamorphosis (1989) J. Neurogenet, 5, pp. 173-192
  • Tissot, M., Stocker, R., Metamorphosis (2000) Drosophila and other insects: The fate of neurons throughout the stages.Prog. Neurobiol., 62, pp. 89-111
  • Tix, S., Minten, J.S., Technau, G.M., Pre-existing neuronal pathways in the developing optic lobes of (1989) Drosophila.Development, 105, pp. 739-746
  • Tully, T., Cambiazo, V., Kruse, L., Memory through metamorphosis in normal and mutant Drosophila (1994) J. Neurosci., 14, pp. 68-74
  • Venables, W.N., Ripley, B.D., (2002) Modern Applied Statistics with S, , 4th Edn. New York, NY: Springer Press
  • Wadhams, L.J., Blight, M.M., Kerguelen, V., Métayer, M.L., Marion-Poll, F., Masson, C., Discrimination of oilseed rape volatiles by honey bee: Novel combined gas chromatographic-electrophysiological behavioral assay (1994) J. Chem. Ecol., 20, pp. 3221-3231
  • Wilson, E.O., (1971) The Insect Societies., , (Cambridge, MA: Harvard University Press)
  • Winnington, A., Napper, R.M., Mercer, A.R., Structural plasticity of identified glomeruli in the antennal lobes of the adult worker honey bee (1996) J. Comp. Neurol., 365, pp. 479-490
  • Zeng, X., Sun, M., Liu, L., Chen, F., Wei, L., Neurexin-1 is required for synapse formation and larvae associative learning in Drosophila (2007) FEBS Lett., 581, pp. 2509-2516

Citas:

---------- APA ----------
Ramírez, G., Fagundez, C., Grosso, J.P., Argibay, P., Arenas, A. & Farina, W.M. (2016) . Odor experiences during preimaginal stages cause behavioral and neural plasticity in adult honeybees. Frontiers in Behavioral Neuroscience, 10(JUN).
http://dx.doi.org/10.3389/fnbeh.2016.00105
---------- CHICAGO ----------
Ramírez, G., Fagundez, C., Grosso, J.P., Argibay, P., Arenas, A., Farina, W.M. "Odor experiences during preimaginal stages cause behavioral and neural plasticity in adult honeybees" . Frontiers in Behavioral Neuroscience 10, no. JUN (2016).
http://dx.doi.org/10.3389/fnbeh.2016.00105
---------- MLA ----------
Ramírez, G., Fagundez, C., Grosso, J.P., Argibay, P., Arenas, A., Farina, W.M. "Odor experiences during preimaginal stages cause behavioral and neural plasticity in adult honeybees" . Frontiers in Behavioral Neuroscience, vol. 10, no. JUN, 2016.
http://dx.doi.org/10.3389/fnbeh.2016.00105
---------- VANCOUVER ----------
Ramírez, G., Fagundez, C., Grosso, J.P., Argibay, P., Arenas, A., Farina, W.M. Odor experiences during preimaginal stages cause behavioral and neural plasticity in adult honeybees. Front. Behav. Neurosci. 2016;10(JUN).
http://dx.doi.org/10.3389/fnbeh.2016.00105