Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Octopamine (OA) underlies reinforcement during appetitive conditioning in the honey bee and fruit fly, acting via different subtypes of receptors. Recently, antibodies raised against a peptide sequence of one honey bee OA receptor, AmOA1, were used to study the distribution of these receptors in the honey bee brain (Sinakevitch et al., 2011). These antibodies also recognize an isoform of the AmOA1 ortholog in the fruit fly (OAMB, mushroom body OA receptor). Here we describe in detail the distribution of AmOA1 receptors in different types of neurons in the honey bee and fruit fly antennal lobes. We integrate this information into a detailed anatomical analysis of olfactory receptor neurons (ORNs), uni- and multi-glomerular projection neurons (uPNs, and mPNs) and local interneurons (LNs) in glomeruli of the antennal lobe. These neurons were revealed by dye injection into the antennal nerve, antennal lobe, medial and lateral antenno-protocerbral tracts (m-APT and l-APT), and lateral protocerebral lobe (LPL) by use of labeled cell lines in the fruit fly or by staining with anti-GABA. We found that ORN receptor terminals and uPNs largely do not show immunostaining for AmOA1. About seventeen GABAergic mPNs leave the antennal lobe through the ml-APT and branch into the LPL. Many, but not all, mPNs show staining for AmOA1. AmOA1 receptors are also in glomeruli on GABAergic processes associated with LNs. The data suggest that in both species one important action of OA in the antennal lobe involves modulation of different types of inhibitory neurons via AmOA1 receptors. We integrated this new information into a model of circuitry within glomeruli of the antennal lobes of these species. © 2013 Sinakevitch, Smith, Locatelli, Huerta, Bazhenov and Smith.

Registro:

Documento: Artículo
Título:Apis mellifera octopamine receptor 1 (AmOA1) expression in antennal lobe networks of the honey bee (Apis mellifera) and fruit fly (Drosophila melanogaster)
Autor:Sinakevitch, I.T.; Smith, A.N.; Locatelli, F.; Huerta, R.; Bazhenov, M.; Smith, B.H.
Filiación:School of Life Sciences, Arizona State University, Tempe, AZ, United States
Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, United States
Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, IFIByNE CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
BioCircuits Institute, University of California San Diego, La Jolla CA, United States
Department of Cell Biology and Neuroscience, University of California, Riverside, CA, United States
Palabras clave:Biogenic amine receptors; G-protein receptors; Learning and plasticity; Octopamine; Olfactory pathways; 4 aminobutyric acid; 4 aminobutyric acid antibody; brain protein; insect protein; octopamine receptor 1; octopamine receptor 1 antibody; protein antibody; unclassified drug; antenna (organ); Apis mellifera; article; cell labeling; cell structure; controlled study; Drosophila melanogaster; GABAergic system; interneuron; lateral antennoprotocerbral tract; lateral protocerebral lobe; medial antennoprotocerbral tract; mushroom body; nerve cell network; neuroanatomy; neuromodulation; nonhuman; olfactory nervous system; olfactory receptor; orthology; protein determination; protein expression; protein localization; sensory nerve cell
Año:2013
Volumen:7
Número:OCT
DOI: http://dx.doi.org/10.3389/fnsys.2013.00070
Título revista:Frontiers in Systems Neuroscience
Título revista abreviado:Front. Syst. Neurosci.
ISSN:16625137
CAS:4 aminobutyric acid, 28805-76-7, 56-12-2
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16625137_v7_nOCT_p_Sinakevitch

Referencias:

  • Abel, R., Rybak, J., Menzel, R., Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera (2001) J. Comp. Neurol, 437, pp. 363-383. , doi: 10.1002/cne.1289
  • Acevespina, E.O., Booker, R., Duerr, J.S., Livingstone, M.S., Quinn, W.G., Smith, R.F., Learning and memory in Drosophila, studied with mutants (1983) Cold Spring Harb. Symp. Quant. Biol, 48, pp. 831-840. , doi: 10.1101/SQB.1983.048.01.086
  • Arnold, G., Masson, C., Budharugsa, S., Comparative-study of the antennal lobes and their afferent pathway in the worker bee and the drone (Apis-Mellifera) (1985) Cell Tissue Res, 242, pp. 593-605. , doi: 10.1007/BF00225425
  • Balfanz, S., Strunker, T., Frings, S., Baumann, A., A family of octopamine [corrected] receptors that specifically induce cyclic AMP production or Ca2+ release inDrosophila melanogaster (2005) J. Neurochem, 93, pp. 440-451. , doi: 10.1111/j.1471-4159.2005.03034.x
  • Beggs, K.T., Tyndall, J.D., Mercer, A.R., Honey bee dopamine and octopamine receptors linked to intracellular calcium signaling have a close phylogenetic and pharmacological relationship (2011) PLoS ONE, 6, pp. e26809. , doi: 10.1371/journal.pone.0026809
  • Brandt, R., Rohlfing, T., Rybak, J., Krofczik, S., Maye, A., Westerhoff, M., Three-dimensional average-shape atlas of the honeybee brain and its applications (2005) J. Comp. Neurol, 492, pp. 1-19. , doi: 10.1002/cne.20644
  • Busch, S., Selcho, M., Ito, K., Tanimoto, H., A map of octopaminergic neurons in the Drosophila brain (2009) J. Comp. Neurol, 513, pp. 643-667. , doi: 10.1002/cne.21966
  • Cevik, M.O., Erden, A., The course of habituation of the proboscis extension reflex can be predicted by sucrose responsiveness in Drosophila (2012) PLoS ONE, 7, pp. e39863. , doi: 10.1371/journal.pone.0039863
  • Chou, Y.H., Spletter, M.L., Yaksi, E., Leong, J.C., Wilson, R.I., Luo, L., Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe (2010) Nat. Neurosci, 13, pp. 439-449. , doi: 10.1038/nn.2489
  • Courjaret, R., Lapied, B., Complex intracellular messenger pathways regulate one type of neuronal alpha-bungarotoxin-resistant nicotinic acetylcholine receptors expressed in insect neurosecretory cells (dorsal unpaired median neurons) (2001) Mol. Pharmacol, 60, pp. 80-91. , doi: 10.1124/mol.60.1.80
  • Dacks, A.M., Reisenman, C.E., Paulk, A.C., Nighorn, A.J., Histamine-immunoreactive local neurons in the antennal lobes of the hymenoptera (2010) J. Comp. Neurol, 518, pp. 2917-2933. , doi: 10.1002/cne.22371
  • Das, A., Sen, S., Lichtneckert, R., Okada, R., Ito, K., Rodrigues, V., Drosophila olfactory local interneurons and projection neurons derive from a common neuroblast lineage specified by the empty spiracles gene (2008) Neural Dev, 3, p. 33. , doi: 10.1186/1749-8104-3-33
  • Duerr, J.S., Quinn, W.G., Three Drosophila mutations that block associative learning also affect habituation and sensitization (1982) Proc. Natl. Acad. Sci. U.S. A, 79, pp. 3646-3650. , doi: 10.1073/pnas.79.11.3646
  • Engel, J.E., Wu, C.F., Neurogenetic approaches to habituation and dishabituation in Drosophila (2009) Neurobiol. Learn. Mem, 92, pp. 166-175. , doi: 10.1016/j.nlm.2008.08.003
  • Esslen, J., Kaissling, K.E., Number and distribution of sensilla on antennal flagellum of honeybee (Apis mellifera L) (1976) Zoomorphologie, 83, pp. 227-251. , doi: 10.1007/BF00993511
  • Evans, P.D., Robb, S., Octopamine receptor subtypes and their modes of action (1993) Neurochem. Res, 18, pp. 869-874. , doi: 10.1007/BF00998270
  • Farooqui, T., Robinson, K., Vaessin, H., Smith, B.H., Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee (2003) J. Neurosci, 23, pp. 5370-5380. , http://www.jneurosci.org/content/23/12/5370.full.pdf, Available online at
  • Fernandez, P.C., Locatelli, F.F., Person-Rennell, N., Deleo, G., Smith, B.H., Associative conditioning tunes transient dynamics of early olfactory processing (2009) J. Neurosci, 29, pp. 10191-10202. , doi: 10.1523/JNEUROSCI.1874-09.2009
  • Fonta, C., Sun, X.J., Masson, C., Morphology and spatial-distribution of bee antennal lobe interneurons responsive to odors (1993) Chem. Senses, 18, pp. 101-119. , doi: 10.1093/chemse/18.2.101
  • Galizia, C.G., McIlwrath, S.L., Menzel, R., A digital three-dimensional atlas of the honeybee antennal lobe based on optical sections acquired by confocal microscopy (1999) Cell Tissue Res, 295, pp. 383-394. , doi: 10.1007/s004410051245
  • Galizia, C.G., Rössler, W., Parallel olfactory systems in insects: Anatomy and function (2010) Annu. Rev. Entomol, 55, pp. 399-420. , doi: 10.1146/annurev-ento-112408-085442
  • Galizia, C.G., Sachse, S., Odor coding in insects (2010) The Neurobiology of Olfaction, pp. 35-67. , In, ed A. Menini (Boca Raton, FL: CRC Press)
  • Girardin, C.C., Kreissl, S., Galizia, C.G., Inhibitory connections in the honeybee antennal lobe are spatially patchy (2013) J. Neurophysiol, 109, pp. 332-343. , doi: 10.1152/jn.01085.2011
  • Grohmann, L., Blenau, W., Erber, J., Ebert, P.R., Strunker, T., Baumann, A., Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain (2003) J. Neurochem, 86, pp. 725-735. , doi: 10.1046/j.1471-4159.2003.01876.x
  • Grolleau, F., Lapied, B., Buckingham, S.D., Mason, W.T., Sattelle, D.B., Nicotine increases [Ca2+]i and regulates electrical activity in insect neurosecretory cells (DUM neurons) via an acetylcholine receptor with 'mixed' nicotinic-muscarinic pharmacology (1996) Neurosci. Lett, 220, pp. 142-146. , doi: 10.1016/S0304-3940(96)13243-2
  • Hammer, M., An Identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees (1993) Nature, 366, pp. 59-63. , doi: 10.1038/366059a0
  • Hammer, M., Menzel, R., Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees (1998) Learn. Mem, 5, pp. 146-156
  • Han, K.A., Millar, N.S., Davis, R.L., A novel octopamine receptor with preferential expression in Drosophila mushroom bodies (1998) J. Neurosci, 18, pp. 3650-3658
  • Hauser, F., Cazzamali, G., Williamson, M., Blenau, W., Grimmelikhuijzen, C.J., A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera (2006) Prog. Neurobiol, 80, pp. 1-19. , doi: 10.1016/j.pneurobio.2006.07.005
  • Hoff, M., Balfanz, S., Ehling, P., Gensch, T., Baumann, A., A single amino acid residue controls Ca2+ signaling by an octopamine receptor from Drosophila melanogaster (2011) FASEB J, 25, pp. 2484-2491. , doi: 10.1096/fj.11-180703
  • Hummel, T., Zipursky, S.L., Afferent induction of olfactory glomeruli requires N-cadherin (2004) Neuron, 42, pp. 77-88. , doi: 10.1016/S0896-6273(04)00158-8
  • Jefferis, G.S., Marin, E.C., Watts, R.J., Luo, L., Development of neuronal connectivity in Drosophila antennal lobes and mushroom bodies (2002) Curr. Opin. Neurobiol, 12, pp. 80-86. , doi: 10.1016/S0959-4388(02)00293-3
  • Jefferis, G.S., Potter, C.J., Chan, A.M., Marin, E.C., Rohlfing, T., Maurer, C.R., Comprehensive maps of Drosophila higher olfactory centers: Spatially segregated fruit and pheromone representation (2007) Cell, 128, pp. 1187-1203. , doi: 10.1016/j.cell.2007.01.040
  • Jefferis, G.S., Vyas, R.M., Berdnik, D., Ramaekers, A., Stocker, R.F., Tanaka, N.K., Developmental origin of wiring specificity in the olfactory system of Drosophila (2004) Development, 131, pp. 117-130. , doi: 10.1242/dev.00896
  • Keene, A.C., Waddell, S., Drosophila olfactory memory: Single genes to complex neural circuits (2007) Nat. Rev. Neurosci, 8, pp. 341-354. , doi: 10.1038/nrn2098
  • Kelber, C., Rössler, W., Kleineidam, C.J., Multiple olfactory receptor neurons and their axonal projections in the antennal lobe of the honeybee Apis mellifera (2006) J. Comp. Neurol, 496, pp. 395-405. , doi: 10.1002/cne.20930
  • Kim, Y.C., Lee, H.G., Lim, J., Han, K.A., Appetitive learning requires the alpha1-like octopamine receptor OAMB in the Drosophila mushroom body neurons (2013) J. Neurosci, 33, pp. 1672-1677. , doi: 10.1523/JNEUROSCI.3042-12.2013
  • Kirschner, S., Kleineidam, C.J., Zube, C., Rybak, J., Grunewald, B., Rössler, W., Dual olfactory pathway in the honeybee, Apis mellifera (2006) J. Comp. Neurol, 499, pp. 933-952. , doi: 10.1002/cne.21158
  • Klagges, B.R.E., Heimbeck, G., Godenschwege, T.A., Hofbauer, A., Pflugfelder, G.O., Reifegerste, R., Invertebrate synapsins: A single gene codes for several isoforms in Drosophila (1996) J. Neurosci, 16, pp. 3154-3165
  • Kreissl, S., Eichmuller, S., Bicker, G., Rapus, J., Eckert, M., Octopamine-like immunoreactivity in the brain and subesophageal ganglion of the honeybee (1994) J. Comp. Neurol, 348, pp. 583-595. , doi: 10.1002/cne.903480408
  • Kreissl, S., Strasser, C., Galizia, C.G., Allatostatin immunoreactivity in the honeybee brain (2010) J. Comp. Neurol, 518, pp. 1391-1417. , doi: 10.1002/cne.22343
  • Laissue, P.P., Vosshall, L.B., The olfactory sensory map in Drosophila (2008) Adv. Exp. Med. Biol, 628, pp. 102-114. , doi: 10.1007/978-0-387-78261-4_7
  • Lapied, B., Le Corronc, H., Hue, B., Sensitive nicotinic and mixed nicotinic-muscarinic receptors in insect neurosecretory cells (1990) Brain Res, 533, pp. 132-136. , doi: 10.1016/0006-8993(90)91805-Q
  • Larsson, M.C., Domingos, A.I., Jones, W.D., Chiappe, M.E., Amrein, H., Vosshall, L.B., Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction (2004) Neuron, 43, pp. 703-714. , doi: 10.1016/j.neuron.2004.08.019
  • Lee, H.G., Seong, C.S., Kim, Y.C., Davis, R.L., Han, K.A., Octopamine receptor OAMB is required for ovulation in Drosophila melanogaster (2003) Dev. Biol, 264, pp. 179-190. , doi: 10.1016/j.ydbio.2003.07.018
  • Lee, T., Lee, A., Luo, L., Development of the Drosophila mushroom bodies: Sequential generation of three distinct types of neurons from a neuroblast (1999) Development, 126, pp. 4065-4076
  • Liu, X., Davis, R.L., The GABAergic anterior paired lateral neuron suppresses and is suppressed by olfactory learning (2009) Nat. Neurosci, 12, pp. 53-59. , doi: 10.1038/nn.2235
  • Locatelli, F.F., Fernandez, P.C., Villareal, F., Muezzinoglu, K., Huerta, R., Galizia, C.G., Nonassociative plasticity alters competitive interactions among mixture components in early olfactory processing (2013) Eur. J. Neurosci, 37, pp. 63-79. , doi: 10.1111/ejn.12021
  • Maqueira, B., Chatwin, H., Evans, P.D., Identification and characterization of a novel family of Drosophila beta-adrenergic-like octopamine G-protein coupled receptors (2005) J. Neurochem, 94, pp. 547-560. , doi: 10.1111/j.1471-4159.2005.03251.x
  • Marin, E.C., Jefferis, G.S., Komiyama, T., Zhu, H., Luo, L., Representation of the glomerular olfactory map in the Drosophila brain (2002) Cell, 109, pp. 243-255. , doi: 10.1016/S0092-8674(02)00700-6
  • Menzel, R., Heyne, A., Kinzel, C., Gerber, B., Fiala, A., Pharmacological dissociation between the reinforcing, sensitizing, and response-releasing functions of reward in honeybee classical conditioning (1999) Behav. Neurosci, 113, pp. 744-754. , doi: 10.1037/0735-7044.113.4.744
  • Menzel, R., Muller, U., Learning and memory in honeybees: From behavior to neural substrates (1996) Annu. Rev. Neurosci, 19, pp. 379-404. , doi: 10.1146/annurev.ne.19.030196.002115
  • Meyer, A., Galizia, C.G., Elemental and configural olfactory coding by antennal lobe neurons of the honeybee (Apis mellifera) (2012) J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol, 198, pp. 159-171. , doi: 10.1007/s00359-011-0696-8
  • Ng, M., Roorda, R.D., Lima, S.Q., Zemelman, B.V., Morcillo, P., Miesenbock, G., Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly (2002) Neuron, 36, pp. 463-474. , doi: 10.1016/S0896-6273(02)00975-3
  • Nishino, H., Nishikawa, M., Mizunami, M., Yokohari, F., Functional and topographic segregation of glomeruli revealed by local staining of antennal sensory neurons in the honeybee Apis mellifera (2009) J. Comp. Neurol, 515, pp. 161-180. , doi: 10.1002/cne.22064
  • Okada, R., Awasaki, T., Ito, K., Gamma-aminobutyric acid (GABA)-mediated neural connections in the Drosophila antennal lobe (2009) J. Comp. Neurol, 514, pp. 74-91. , doi: 10.1002/cne.21971
  • Olsen, S.R., Bhandawat, V., Wilson, R.I., Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe (2007) Neuron, 54, pp. 89-103. , doi: 10.1016/j.neuron.2007.03.010
  • Olsen, S.R., Bhandawat, V., Wilson, R.I., Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe (vol 54, pg 89, 2007) (2007) Neuron, 54, p. 667. , doi: 10.1016/j.neuron.2007.05.006
  • Page, R.E., Erber, J., Fondrk, M.K., The effect of genotype on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.) (1998) J. Comp. Physiol. A, 182, pp. 489-500. , doi: 10.1007/s003590050196
  • Python, F., Stocker, R.F., Adult-like complexity of the larval antennal lobe of D. melanogaster despite markedly low numbers of odorant receptor neurons (2002) J. Comp. Neurol, 445, pp. 374-387. , doi: 10.1002/cne.10188
  • Rein, J., Mustard, J.A., Strauch, M., Smith, B.H., Galizia, C.G., Octopamine modulates activity of neural networks in the honey bee antennal lobe (2013) J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol, , doi: 10.1007/s00359-013-0805-y
  • Riffell, J.A., Lei, H., Abrell, L., Hildebrand, J.G., Neural basis of a pollinator's buffet: Olfactory specialization and learning in Manduca sexta (2013) Science, 339, pp. 200-204. , doi: 10.1126/science.1225483
  • Robertson, H.M., Wanner, K.W., The chemoreceptor superfamily in the honey bee, Apis mellifera: Expansion of the odorant, but not gustatory, receptor family (2006) Genome Res, 16, pp. 1395-1403. , doi: 10.1101/gr.5057506
  • Roeder, T., Octopamine in invertebrates (1999) Prog. Neurobiol, 59, pp. 533-561. , doi: 10.1016/S0301-0082(99)00016-7
  • Rybak, J., The digital honey bee brain atlas (2012) Honeybee Neurobiology and Behavior, pp. 125-140. , In, eds C.G. Galizia, D. Eisenhardt, and M. Giurfa (Heidelberg: Springer), doi: 10.1007/978-94-007-2099-2_11
  • Rybak, J., Menzel, R., Anatomy of the mushroom bodies in the honey bee brain: The neuronal connections of the alpha-lobe (1993) J. Comp. Neurol, 334, pp. 444-465. , doi: 10.1002/cne.903340309
  • Sachse, S., Galizia, C.G., Role of inhibition for temporal and spatial odor representation in olfactory output neurons: A calcium imaging study (2002) J. Neurophysiol, 87, pp. 1106-1117. , doi: 10.1152/jn.00325.2001
  • Schafer, S., Bicker, G., Distribution of GABA-like immunoreactivity in the brain of the honeybee (1986) J. Comp. Neurol, 246, pp. 287-300. , doi: 10.1002/cne.902460302
  • Scheiner, R., Responsiveness to sucrose and habituation of the proboscis extension response in honey bees (2004) J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol, 190, pp. 727-733. , doi: 10.1007/s00359-004-0531-6
  • Scheiner, R., Page Jr., R.E., Erber, J., Responsiveness to sucrose affects tactile and olfactory learning in preforaging honey bees of two genetic strains (2001) Behav. Brain Res, 120, pp. 67-73. , doi: 10.1016/S0166-4328(00)00359-4
  • Scheiner, R., Sokolowski, M.B., Erber, J., Activity of cGMP-dependent protein kinase (PKG) affects sucrose responsiveness and habituation in Drosophila melanogaster (2004) Learn. Mem, 11, pp. 303-311. , doi: 10.1101/lm.71604
  • Schröter, U., Malun, D., Menzel, R., Innervation pattern of suboesophageal ventral unpaired median neurones in the honeybee brain (2007) Cell Tissue Res, 327, pp. 647-667. , doi: 10.1007/s00441-006-0197-1
  • Schwaerzel, M., Monastirioti, M., Scholz, H., Friggi-Grelin, F., Birman, S., Heisenberg, M., Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila (2003) J. Neurosci, 23, pp. 10495-10502. , http://www.jneurosci.org/content/23/33/10495.full.pdf, Available online at
  • Seguela, P., Geffard, M., Buijs, R.M., Le Moal, M., Antibodies against gamma-aminobutyric acid: Specificity studies and immunocytochemical results (1984) Proc. Natl. Acad. Sci. U.S. A, 81, pp. 3888-3892. , doi: 10.1073/pnas.81.12.3888
  • Seki, Y., Rybak, J., Wicher, D., Sachse, S., Hansson, B.S., Physiological and morphological characterization of local interneurons in the Drosophila antennal lobe (2010) J. Neurophysiol, 104, pp. 1007-1019. , doi: 10.1152/jn.00249.2010
  • Shang, Y.H., Claridge-Chang, A., Sjulson, L., Pypaert, M., Miesenbock, G., Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe (2007) Cell, 128, pp. 601-612. , doi: 10.1016/j.cell.2006.12.034
  • Sinakevitch, I., Douglass, J.K., Scholtz, G., Loesel, R., Strausfeld, N.J., Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa (2003) J. Comp. Neurol, 467, pp. 150-172. , doi: 10.1002/cne.10925
  • Sinakevitch, I., Mustard, J.A., Smith, B.H., Distribution of the octopamine receptor AmOA1 in the honey bee brain (2011) PLoS ONE, 6, pp. e14536. , doi: 10.1371/journal.pone.0014536
  • Sinakevitch, I., Niwa, M., Strausfeld, N.J., Octopamine-like immunoreactivity in the honey bee and cockroach: Comparable organization in the brain and subesophageal ganglion (2005) J. Comp. Neurol, 488, pp. 233-254. , doi: 10.1002/cne.20572
  • Sinakevitch, I., Strausfeld, N.J., Chemical neuroanatomy of the fly's movement detection pathway (2004) J. Comp. Neurol, 468, pp. 6-23. , doi: 10.1002/cne.10929
  • Sinakevitch, I., Strausfeld, N.J., Comparison of octopamine-like immunoreactivity in the brains of the fruit fly and blow fly (2006) J. Comp. Neurol, 494, pp. 460-475. , doi: 10.1002/cne.20799
  • Sinakevitch, I.G., Geffard, M., Pelhate, M., Lapied, B., Anatomy and targets of dorsal unpaired median neurones in the terminal abdominal ganglion of the male cockroach Periplaneta americana L (1996) J. Comp. Neurol, 367, pp. 147-163
  • Stocker, R.F., Drosophila as a focus in olfactory research: Mapping of olfactory sensilla by fine structure, odor specificity, odorant receptor expression, and central connectivity (2001) Microsc. Res. Tech, 55, pp. 284-296. , doi: 10.1002/jemt.1178
  • Stocker, R.F., Heimbeck, G., Gendre, N., De Belle, J.S., Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons (1997) J. Neurobiol, 32, pp. 443-456
  • Stocker, R.F., Lienhard, M.C., Borst, A., Fischbach, K.F., Neuronal architecture of the antennal lobe in Drosophila melanogaster (1990) Cell Tissue Res, 262, pp. 9-34. , doi: 10.1007/BF00327741
  • Strausfeld, N.J., Organization of the honey bee mushroom body: Representation of the calyx within the vertical and gamma lobes (2002) J. Comp. Neurol, 450, pp. 4-33. , doi: 10.1002/cne.10285
  • Strausfeld, N.J., Sinakevitch, I., Vilinsky, I., The mushroom bodies of Drosophila melanogaster: An immunocytological and golgi study of Kenyon cell organization in the calyces and lobes (2003) Microsc. Res. Tech, 62, pp. 151-169. , doi: 10.1002/jemt.10368
  • Sweeney, L.B., Couto, A., Chou, Y.H., Berdnik, D., Dickson, B.J., Luo, L.Q., Temporal target restriction of olfactory receptor neurons by Semaphorin-1a/PlexinA-mediated axon-axon interactions (2007) Neuron, 53, pp. 185-200. , doi: 10.1016/j.neuron.2006.12.022
  • Tanaka, N.K., Endo, K., Ito, K., Organization of antennal lobe-associated neurons in adult Drosophila melanogaster brain (2012) J. Comp. Neurol, 520, pp. 4067-4130. , doi: 10.1002/cne.23142
  • Tanaka, N.K., Suzuki, E., Dye, L., Ejima, A., Stopfer, M., Dye fills reveal additional olfactory tracts in the protocerebrum of wild-type Drosophila (2012) J. Comp. Neurol, 520, pp. 4131-4140. , doi: 10.1002/cne.23149
  • Tanaka, N.K., Tanimoto, H., Ito, K., Neuronal assemblies of the Drosophila mushroom body (2008) J. Comp. Neurol, 508, pp. 711-755. , doi: 10.1002/cne.21692
  • Vonhoff, F., Duch, C., Tiling among stereotyped dendritic branches in an identified Drosophila motoneuron (2010) J. Comp. Neurol, 518, pp. 2169-2185. , doi: 10.1002/cne.22380
  • Wilson, R.I., Understanding the functional consequences of synaptic specialization: Insight from the Drosophila antennal lobe (2011) Curr. Opin. Neurobiol, 21, pp. 254-260. , doi: 10.1016/j.conb.2011.03.002
  • Wilson, R.I., Laurent, G., Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe (2005) J. Neurosci, 25, pp. 9069-9079. , doi: 10.1523/JNEUROSCI.2070-05.2005
  • Wright, G.A., Mustard, J.A., Kottcamp, S.M., Smith, B.H., Olfactory memory formation and the influence of reward pathway during appetitive learning by honey bees (2007) J. Exp. Biol, 210, pp. 4024-4033. , doi: 10.1242/jeb.006585

Citas:

---------- APA ----------
Sinakevitch, I.T., Smith, A.N., Locatelli, F., Huerta, R., Bazhenov, M. & Smith, B.H. (2013) . Apis mellifera octopamine receptor 1 (AmOA1) expression in antennal lobe networks of the honey bee (Apis mellifera) and fruit fly (Drosophila melanogaster). Frontiers in Systems Neuroscience, 7(OCT).
http://dx.doi.org/10.3389/fnsys.2013.00070
---------- CHICAGO ----------
Sinakevitch, I.T., Smith, A.N., Locatelli, F., Huerta, R., Bazhenov, M., Smith, B.H. "Apis mellifera octopamine receptor 1 (AmOA1) expression in antennal lobe networks of the honey bee (Apis mellifera) and fruit fly (Drosophila melanogaster)" . Frontiers in Systems Neuroscience 7, no. OCT (2013).
http://dx.doi.org/10.3389/fnsys.2013.00070
---------- MLA ----------
Sinakevitch, I.T., Smith, A.N., Locatelli, F., Huerta, R., Bazhenov, M., Smith, B.H. "Apis mellifera octopamine receptor 1 (AmOA1) expression in antennal lobe networks of the honey bee (Apis mellifera) and fruit fly (Drosophila melanogaster)" . Frontiers in Systems Neuroscience, vol. 7, no. OCT, 2013.
http://dx.doi.org/10.3389/fnsys.2013.00070
---------- VANCOUVER ----------
Sinakevitch, I.T., Smith, A.N., Locatelli, F., Huerta, R., Bazhenov, M., Smith, B.H. Apis mellifera octopamine receptor 1 (AmOA1) expression in antennal lobe networks of the honey bee (Apis mellifera) and fruit fly (Drosophila melanogaster). Front. Syst. Neurosci. 2013;7(OCT).
http://dx.doi.org/10.3389/fnsys.2013.00070