Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Secreted protein, acidic and rich in cysteines (SPARC) is a secreted protein associated with increased aggressiveness of different human cancer types. In order to identify downstream mediators of SPARC activity, we performed a 2-DE proteomic analysis of human melanoma cells following antisense-mediated downregulation of SPARC expression. We found 23/504 differential spots, 15 of which were identified by peptide fingerprinting analysis. Three of the differential proteins (N-cadherin (N-CAD), clusterin (CLU), and HSP27) were validated by immunoblotting, confirming decreased levels of N-CAD and CLU and increased amounts of HSP27 in conditioned media of cells with diminished SPARC expression. Furthermore, transient knock down of SPARC expression in melanoma cells following adenoviral-mediated transfer of antisense RNA confirmed these changes. We next developed two different RNAs against SPARC that were able to inhibit in vivo melanoma cell growth. Immunoblotting of the secreted fraction of RNAi-transfected melanoma cells confirmed that downregulation of SPARC expression promoted decreased levels of N-CAD and CLU and increased secretion of HSP27. Transient re-expression of SPARC in SPARC-downregulated cells reverted extracellular N-CAD, CLU, and HSP27 to levels similar to those in the control. These results constitute the first evidence that SPARC, N-CAD, CLU, and HSP27 converge in a unique molecular network in melanoma cells. © 2007 WILEY-VCH Verlag GmbH & Co. KGaA.

Registro:

Documento: Artículo
Título:Proteomic analysis identified N-cadherin, clusterin, and HSP27 as mediators of SPARC (secreted protein, acidic and rich in cysteines) activity in melanoma cells
Autor:Sosa, M.S.; Girotti, M.R.; Salvatierra, E.; Prada, F.; De Olmo, J.A.L.; Gallango, S.J.; Albar, J.P.; Podhajcer, O.L.; Llera, A.S.
Filiación:Laboratory of Molecular and Cellular Therapy, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Proteomics Unit, Centro Nacional de Biotecnología (CNB), Madrid, Spain
Fundación Instituto Leloir, Av. Patricias Argentinas 435, 1405BWE Buenos Aires, Argentina
Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
Palabras clave:Melanoma; Osteonectin; Secreted protein; SPARC; Two-dimensional gel electrophoresis; clusterin; complementary RNA; cysteine; heat shock protein 27; nerve cell adhesion molecule; osteonectin; protein sparc; unclassified drug; article; cell growth; controlled study; down regulation; human; human cell; immunoblotting; melanoma; melanoma cell; priority journal; protein analysis; protein expression; protein function; proteomics; Cadherins; Cell Line, Tumor; Clusterin; Heat-Shock Proteins; Humans; Melanoma; Neoplasm Proteins; Osteonectin; Proteomics; Tumor Cells, Cultured
Año:2007
Volumen:7
Número:22
Página de inicio:4123
Página de fin:4134
DOI: http://dx.doi.org/10.1002/pmic.200700255
Título revista:Proteomics
Título revista abreviado:Proteomics
ISSN:16159853
CODEN:PROTC
CAS:cysteine, 4371-52-2, 52-89-1, 52-90-4; osteonectin, 104052-78-0; Cadherins; Clusterin; HSPB1 protein, human; Heat-Shock Proteins; Neoplasm Proteins; Osteonectin
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16159853_v7_n22_p4123_Sosa

Referencias:

  • Brekken, R.A., Sage, E.H., SPARC, a matricellular protein: At the crossroads of cell-matrix communication (2000) Matrix Biol, 19, pp. 569-580
  • Bradshaw, A.D., Sage, E.H., SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury (2001) J. Clin. Invest, 107, pp. 1049-1054
  • Funk, S.E., Sage, E.H., The Ca 2+ -binding glycoprotein SPARC modulates cell cycle progression in bovine aortic endothelial cells (1991) Proc. Natl. Acad. Sci USA, 88, pp. 2648-2652
  • Funk, S.E., Sage, E.H., Differential effects of SPARC and cationic SPARC peptides on DNA synthesis by endothelial cells and fibroblasts (1993) J. Cell Physiol, 154, pp. 53-63
  • Kupprion, C., Motamed, K., Sage, E.H., SPARC (BM-40, Osteonectin) inhibits the mitogenic effect of vascular endothelial growth factor on microvascular endothelial cells (1998) J. Biol. Chem, 273, pp. 29635-29640
  • Sage, E.H., Vernon, R., Funk, S., Everitt, E., Angello, J., SPARC, a secreted protein associated with cellular proliferation, inhibits cell spreading in vitro and exhibits Ca 2+ -dependent binding to the extracellular matrix (1989) J. Cell. Biol, 109, pp. 341-356
  • Barker, T.H., Baneyx, G., Cardo-Vila, M., Workman, G.A., SPARC regulates extracellular matrix organization through its modulation of integrin-linked kinase activity (2005) J. Biol. Chem, 280, pp. 36483-36493
  • Yan, Q., Sage, E.H., SPARC, a matricellular glycoprotein with important biological functions (1999) J. Histochem. Cytochem, 47, pp. 1495-1506
  • Ledda, M.F., Bravo, A.I., Adris, S., Bover, L., The expression on the secreted protein acidic and rich in cysteine (SPARC) is associated with the neoplastic progression of human melanoma (1997) J. Invest. Dermatol, 108, pp. 210-214
  • Rempel, S.A., Ge, S., Gutiérrez, J.A., SPARC: A potential diagnostic marker of invasive meningiomas (1999) Clin. Cancer Res, 5, pp. 237-241
  • Bos, T.J., Cohn, S.L., Kleinman, H.K., Murphy-Ulrich, J.E., International Hermelin brain tumor symposium on matricellular proteins in normal and cancer cell-matrix interactions (2004) Matrix Biol, 23, pp. 63-69
  • Sato, N., Fukushima, N., Maehara, N., Matsubayashi, H., SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor-stromal interactions (2003) Oncogene, 22, pp. 5021-5030
  • Ledda, M.F., Adris, S., Bravo, A.I., Kairiyama, C., Suppression of SPARC expression by antisense RNA abrogates the tumorigenicity of human melanoma cells (1997) Nat. Med, 3, pp. 171-175
  • Woelfle, U., Cloos, J., Sauter, G., Riethdorf, L., Molecular signature associated with bone marrow micrometastasis in human breast cancer (2003) Cancer Res, 63, pp. 5679-5684
  • Campo McKnight, D.A., Sosnoski, D.M., Koblinski, J.E., Gay, C.V., Roles of osteonectin in the migration of breast cancer cells into bone (2005) J. Cell Biochem, 97, pp. 288-302
  • Mok, S.C., Chan, W.Y., Wong, K.K., Muto, M.G., Berkowitz, R.S., SPARC, an extracellular matrix protein with tumor-suppressing activity in human ovarian epithelial cells (1996) Oncogene, 12, pp. 1895-1901
  • Yiu, G.K., Chan, W.Y., Ng, S.W., Chan, P.S., SPARC (secreted protein acidic and rich in cysteine) induces apoptosis in ovarian cancer cells (2001) Am. J. Pathol, 159, pp. 609-622
  • Chlenski, A., Liu, S., Crawford, S.E., Volpert, O.V., SPARC is a key Schwannian-derived inhibitor controlling neuroblastoma tumor angiogenesis (2002) Cancer Res, 62, pp. 7357-7363
  • Alvarez, M.J., Prada, F., Salvatierra, E., Bravo, A.I., Secreted protein acidic and rich in cysteine produced by human melanoma cells modulates polymorphonuclear leukocyte recruitment and antitumor cytotoxic capacity (2005) Cancer Res, 65, pp. 5123-5132
  • Kairiyama, C., Slavutsky, I., Larripa, I., Morvillo, V., Biologic, immunocytochemical, and cytogenetic characterization of two new human melanoma cell lines: IIB-MEL-LES and IIB-MEL-IAN (1995) Pigment Cell Res, 8, pp. 121-131
  • Gorg, A., Obermaier, C., Boguth, G., Harder, A., The current state of two-dimensional electrophoresis with immobilized pH gradients (2000) Electrophoresis, 21, pp. 1037-1053
  • Heukeshoven, J., Dernick, R., Improved silver staining procedure for fast staining in phastSystem development unit. I. staining of sodium dodecyl sulfate gels (1988) Electrophoresis, 9, pp. 28-32
  • Shevchenko, A., Wilm, M., Vorm, O., Mann, M., Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels (1996) Anal. Chem, 68, pp. 850-858
  • Reed, L.J., Muench, H., A simple method of estimating fifty per cent endpoints (1938) Am. J. Hyg, 27, pp. 493-497
  • Chomczynski, P., Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction (1987) Anal. Biochem, 162, pp. 156-159
  • Bradshaw, A.D., Reed, M.J., Sage, E.H., SPARC-null mice exhibit accelerated cutaneous wound closure (2002) J. Histochem. Cytochem, 50, pp. 1-10
  • Bradshaw, A.D., Puolakkainen, P., Dasgupta, J., Davidson, J.M., SPARC-null mice display abnormalities in the dermis characterized by decreased collagen fibril diameter and reduced tensile strength (2003) J. Invest Dermatol, 120, pp. 949-955
  • Reiss, K., Maretzky, T., Ludwig, A., Tousseyn, T., ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and beta-catenin nuclear signalling (2005) EMBO J, 24, pp. 742-752
  • Utton, M.A., Eickholt, B., Howell, F.V., Wallis, J., Doherty, P., Soluble N-cadherin stimulates fibroblast growth factor receptor dependent neurite outgrowth and N-cadherin and the fibroblast growth factor receptor co-cluster in cells (2001) J. Neurochem, 76, pp. 1421-1430
  • Paradies, N.E., Grunwald, G.B., Purification and characterization of NCAD90, a soluble endogenous form of N-cadherin, which is generated by proteolysis during retinal development and retains adhesive and neurite-promoting function (1993) J. Neurosci. Res, 36, pp. 33-45
  • Prada, F., Benedetti, L.G., Bravo, A.I., Alvarez, M.J., SPARC endogenous level, rather than fibroblast-produced SPARC or stroma reorganization induced by SPARC, is responsible for melanoma cell growth (2007) J. Invest. Dermatol, , in press, DOI:10.1038/sj.jid.5700962
  • Haass, N.K., Smalley, K.S., Li, L., Herlyn, M., Adhesion, migration and communication in melanocytes and melanoma (2005) Pigment Cell Res, 18, pp. 150-159
  • Kuphal, S., Bosserhoff, A.K., Influence of the cytoplasmic domain of E-cadherin on endogenous N-cadherin expression in malignant melanoma (2006) Oncogene, 25, pp. 248-259
  • Silye, R., Karayiannakis, A.J., Syrigos, K.N., Poole, S., E-cadherin/catenin complex in benign and malignant melanocyte lesions (1998) J. Pathol, 186, pp. 350-355
  • Li, G., Satyamoorthy, K., Herlyn, M., Dynamics of cell interactions and communications during melanoma development (2002) Crit. Rev. Oral Biol. Med, 13, pp. 62-70
  • Robert, G., Gaggioli, C., Bailet, O., Chavey, C., SPARC Represses E-Cadherin and Induces Mesenchymal Transition during Melanoma Development (2006) Cancer Res, 66, pp. 7516-7523
  • Alonso, S.R., Tracey, L., Ortiz, P., Perez-Gomez, B., A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis (2007) Cancer Res, 67, pp. 3450-3460
  • O'Sullivan, J., Whyte, L., Drake, J., Tenniswood, M., Alterations in the post-translational modification and intracellular trafficking of clusterin in MCF-7 cells during apoptosis (2003) Cell Death Differ, 10, pp. 914-927
  • Leskov, K.S., Klokov, D.Y., Li, J., Kinsella, T.J., Boothman, D.A., Synthesis and functional analyses of nuclear clusterin, a cell death protein (2003) J. Biol. Chem, 278, pp. 11590-11600
  • Pucci, S., Bonanno, E., Pichiorri, F., Angeloni, C., Spagnoli, L.G., Modulation of different clusterin isoforms in human colon tumorigenesis (2004) Oncogene, 23, pp. 2298-2304
  • Miyake, H., Hara, I., Kamidono, S., Gleave, M.E., Synergistic chemsensitization and inhibition of tumor growth and metastasis by the antisense oligodeoxynucleotide targeting clusterin gene in a human bladder cancer model (2001) Clin. Cancer Res, 7, pp. 4245-4252
  • Hoeller, C., Pratscher, B., Thallinger, C., Winter, D., Clusterin regulates drug-resistance in melanoma cells (2005) J. Invest Dermatol, 124, pp. 1300-1307
  • Tai, I.T., Dai, M., Owen, D.A., Chen, L.B., Genome-wide expression analysis of therapy-resistant tumors reveals SPARC as a novel target for cancer therapy (2005) J. Clin. Invest, 115, pp. 1492-1502
  • Shi, Q., Bao, S., Maxwell, J.A., Reese, E.D., Secreted protein acidic, rich in cysteine (SPARC), mediates cellular survival of gliomas through AKT activation (2004) J. Biol. Chem, 279, pp. 52200-52209
  • Volmer, M.W., Radacz, Y., Hahn, S.A., Klein-Scory, S., Tumor suppressor Smad4 mediates downregulation of the anti-adhesive invasion-promoting matricellular protein SPARC: Landscaping activity of Smad4 as revealed by a "secretome" analysis (2004) Proteomics, 4, pp. 1324-1334
  • Volmer, M.W., Stuhler, K., Zapatka, M., Schoneck, A., Differential proteome analysis of conditioned media to detect Smad4 regulated secreted biomarkers in colon cancer (2005) Proteomics, 5, pp. 2587-2601
  • Wegrowski, Y., Perreau, C., Martiny, L., Haye, B., Transforming growth factor beta-1 up-regulates clusterin synthesis in thyroid epithelial cells (1999) Exp. Cell Res, 247, pp. 475-483
  • Jin, G., Howe, P.H., Transforming growth factor beta regulates clusterin gene expression via modulation of transcription factor c-Fos (1999) Eur. J. Biochem, 263, pp. 534-542
  • Reed, M.J., Vernon, R.B., Abrass, I.B., Sage, E.H., TGF-b 1 induces the expression of type I collagen and SPARC, and enhances contraction of collagen gels, by fibroblasts from young and aged donors (1994) J. Cell Physiol, 158, pp. 169-179
  • Ford, R., Wang, G., Jannati, P., Adler, D., Modulation of SPARC expression during butyrate-induced terminal differentiation of cultured human keratinocytes: Regulation via a TGF-beta-dependent pathway (1993) Exp. Cell Res, 206, pp. 261-275
  • Bassuk, J.A., Pichler, R., Rothmier, J.D., Pippen, J., Induction of TGF-beta1 by the matricellular protein SPARC in a rat model of glomerulonephritis (2000) Kidney Int, 57, pp. 117-128
  • Eustace, B.K., Sakurai, T., Stewart, J.K., Yimlamai, D., Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness (2004) Nat. Cell Biol, 6, pp. 507-514
  • Celis, J.E., Gromov, P., Cabezon, T., Moreira, J.M., Proteomic characterization of the interstitial fluid perfusing the breast tumor microenvironment: A novel resource for biomarker and therapeutic target discovery (2004) Mol. Cell. Proteomics, 3, pp. 327-344
  • Garrido, C., Schmitt, E., Cande, C., Vahsen, N., HSP27 and HSP70: Potentially oncogenic apoptosis inhibitors (2003) Cell Cycle, 2, pp. 579-584
  • Garrido, C., Fromentin, A., Bonnotte, B., Favre, N., Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones (1998) Cancer Res, 58, pp. 5495-5499
  • Lemieux, P., Oesterreich, S., Lawrence, J.A., Steeg, P.S., The small heat shock protein hsp27 increases invasiveness but decreases motility of breast cancer cells (1997) Invasion Metastasis, 17, pp. 113-123
  • Aldrian, S., Trautinger, F., Frohlich, I., Berger, W., Overexpression of Hsp27 affects the metastatic phenotype of human melanoma cells in vitro (2002) Cell Stress Chaperones, 7, pp. 177-185
  • Aldrian, S., Kindas-Mugge, I., Trautinger, F., Frohlich, I., Overexpression of Hsp27 in a human melanoma cell line: Regulation of E-cadherin, MUC18/MCAM, and plasminogen activator (PA) system (2003) Cell Stress Chaperones, 8, pp. 249-257
  • Gronborg, M., Kristiansen, T.Z., Iwahori, A., Chang, R., Biomarker discovery from pancreatic cancer secretome using a differential proteomics approach (2006) Mol. Cell. Proteomics, 5, pp. 157-171
  • Lafon-Cazal, M., Adjali, O., Galeotti, N., Poncet, J., Proteomic analysis of astrocytic secretion in the mouse: Comparison with the cerebrospinal fluid proteome (2003) J. Biol. Chem, 278, pp. 24438-24448
  • Fevrier, B., Raposo, G., Exosomes: Endosomal-derived vesicles shipping extracellular messages (2004) Curr. Opin. Cell. Biol, 16, pp. 415-421
  • Clayton, A., Turkes, A., Navabi, H., Mason, M.D., Tabi, Z., Induction of heat shock proteins in B-cell exosomes (2005) J. Cell Sci, 118, pp. 3631-3638
  • Thery, C., Zitvogel, L., Amigorena, S., Exosomes: Composition, biogenesis and function (2002) Nat. Rev. Immunol, 2, pp. 569-579

Citas:

---------- APA ----------
Sosa, M.S., Girotti, M.R., Salvatierra, E., Prada, F., De Olmo, J.A.L., Gallango, S.J., Albar, J.P.,..., Llera, A.S. (2007) . Proteomic analysis identified N-cadherin, clusterin, and HSP27 as mediators of SPARC (secreted protein, acidic and rich in cysteines) activity in melanoma cells. Proteomics, 7(22), 4123-4134.
http://dx.doi.org/10.1002/pmic.200700255
---------- CHICAGO ----------
Sosa, M.S., Girotti, M.R., Salvatierra, E., Prada, F., De Olmo, J.A.L., Gallango, S.J., et al. "Proteomic analysis identified N-cadherin, clusterin, and HSP27 as mediators of SPARC (secreted protein, acidic and rich in cysteines) activity in melanoma cells" . Proteomics 7, no. 22 (2007) : 4123-4134.
http://dx.doi.org/10.1002/pmic.200700255
---------- MLA ----------
Sosa, M.S., Girotti, M.R., Salvatierra, E., Prada, F., De Olmo, J.A.L., Gallango, S.J., et al. "Proteomic analysis identified N-cadherin, clusterin, and HSP27 as mediators of SPARC (secreted protein, acidic and rich in cysteines) activity in melanoma cells" . Proteomics, vol. 7, no. 22, 2007, pp. 4123-4134.
http://dx.doi.org/10.1002/pmic.200700255
---------- VANCOUVER ----------
Sosa, M.S., Girotti, M.R., Salvatierra, E., Prada, F., De Olmo, J.A.L., Gallango, S.J., et al. Proteomic analysis identified N-cadherin, clusterin, and HSP27 as mediators of SPARC (secreted protein, acidic and rich in cysteines) activity in melanoma cells. Proteomics. 2007;7(22):4123-4134.
http://dx.doi.org/10.1002/pmic.200700255