Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We give necessary and sufficient conditions in terms of sign vectors for the injectivity of families of polynomial maps with arbitrary real exponents defined on the positive orthant. Our work relates and extends existing injectivity conditions expressed in terms of Jacobian matrices and determinants. In the context of chemical reaction networks with power-law kinetics, our results can be used to preclude as well as to guarantee multiple positive steady states. In the context of real algebraic geometry, our work recognizes a prior result of Craciun, Garcia-Puente, and Sottile, together with work of two of the authors, as the first partial multivariate generalization of the classical Descartes’ rule, which bounds the number of positive real roots of a univariate real polynomial in terms of the number of sign variations of its coefficients. © 2015, SFoCM.

Registro:

Documento: Artículo
Título:Sign Conditions for Injectivity of Generalized Polynomial Maps with Applications to Chemical Reaction Networks and Real Algebraic Geometry
Autor:Müller, S.; Feliu, E.; Regensburger, G.; Conradi, C.; Shiu, A.; Dickenstein, A.
Filiación:Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenbergerstraße 69, Linz, 4040, Austria
Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark
Max-Planck-Institut Dynamik komplexer technischer Systeme, Sandtorstr. 1, Magdeburg, 39106, Germany
Department of Mathematics, Texas A&M University, Mailstop 3368, College Station, TX 77843-3368, United States
Dto. de Matemática, FCEN, Universidad de Buenos Aires, and IMAS (UBA-CONICET), Ciudad Universitaria, Pab. I, Buenos Aires, C1428EGA, Argentina
Palabras clave:Descartes’ rule of signs; Oriented matroid; Power-law kinetics; Restricted injectivity; Sign vector; Algebra; Chemical reactions; Geometry; Jacobian matrices; Reaction kinetics; Descartes; Injectivity; Oriented matroid; Power-law kinetics; Sign vectors; Polynomials
Año:2016
Volumen:16
Número:1
Página de inicio:69
Página de fin:97
DOI: http://dx.doi.org/10.1007/s10208-014-9239-3
Título revista:Foundations of Computational Mathematics
Título revista abreviado:Found. Comput. Math.
ISSN:16153375
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16153375_v16_n1_p69_Muller

Referencias:

  • Althaus, E., Dumitriu, D., Certifying feasibility and objective value of linear programs (2012) Oper. Res. Lett., 40 (4), pp. 292-297
  • Anderson, R.M., May, R.M., (1991) Infectious diseases of humans: Dynamics and control, , Oxford University Press, Oxford
  • Applegate, D.L., Cook, W., Dash, S., Espinoza, D.G., Exact solutions to linear programming problems, Oper (2007) Res. Lett, 35, pp. 693-699
  • http://www.math.uwaterloo.ca/~bico//qsopt/ex/, D. L. Applegate, W. Cook, S. Dash, and D. G. Espinoza, QSopt_ex (2009). Available online at; Babson, E., Finschi, L., Fukuda, K., Cocircuit graphs and efficient orientation reconstruction in oriented matroids, European (2001) J. Combin, 22, pp. 587-600
  • Banaji, M., Craciun, G., Graph-theoretic approaches to injectivity and multiple equilibria in systems of interacting elements, Commun (2009) Math. Sci, 7, pp. 867-900
  • Banaji, M., Craciun, G., Graph-theoretic criteria for injectivity and unique equilibria in general chemical reaction systems, Adv (2010) Appl. Math, 44, pp. 168-184
  • M. Banaji, P. Donnell, and S. Baigent, p matrix properties, injectivity, and stability in chemical reaction systems, SIAM J. Appl. Math. 67 (2007), 1523–1547; Banaji, M., Pantea, C., Some results on injectivity and multistationarity in chemical reaction networks (2013) Available online at arXiv, 1309, p. 6771. , arXiv:1309.6771
  • Basu, S., Pollack, R., Roy, M.F., (2006) Algorithms in real algebraic geometry, second ed., Algorithms and Computation in Mathematics, vol. 10, Springer-Verlag, , http://perso.univ-rennes1.fr/marie-francoise.roy/bpr-ed2-posted2.html, Berlin: Updated online version
  • Bihan, F., Dickenstein, A., Descartes’ rule of signs for polynomial systems supported on circuits (2014) Preprint
  • Birch, M.W., Maximum likelihood in three-way contingency tables (1963) J. Roy. Stat. Soc. B Met., 25, pp. 220-233
  • Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.M., (1999) Oriented matroids, second ed., Encyclopedia Math. Appl., vol. 46, , Cambridge University Press, Cambridge
  • Boyd, S., Kim, S.J., Vandenberghe, L., Hassibi, A., A tutorial on geometric programming, Optim (2007) Eng, 8, pp. 67-127
  • Brualdi, R., Shader, B., (1995) Matrices of sign-solvable linear systems, , Cambridge University Press,
  • Chaiken, S., theory and an electric application, Matroid theory (Seattle, WA, 1995), Contemp (1996) Math., vol. 197, Amer. Math. Soc., Providence, RI, pp. 313-331
  • Conradi, C., Flockerzi, D., Multistationarity in mass action networks with applications to ERK activation (2012) J. Math. Biol, 65, pp. 107-156
  • Conradi, C., Flockerzi, D., Switching in mass action networks based on linear inequalities, SIAM (2012) J. Appl. Dyn. Syst, 11, pp. 110-134
  • Conradi, C., Flockerzi, D., Raisch, J., Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space (2008) Math. Biosci, 211, pp. 105-131
  • Craciun, G., Feinberg, M., Multiple equilibria in complex chemical reaction networks (2005) I. The injectivity property, SIAM J. Appl. Math, 65, pp. 1526-1546
  • Craciun, G., Feinberg, M., Multiple equilibria in complex chemical reaction networks: extensions to entrapped species models, Systems Biology (2006) IEE Proceedings, 153, pp. 179-186
  • Craciun, G., Feinberg, M., Multiple equilibria in complex chemical reaction networks. II. The species-reaction graph, SIAM (2006) J. Appl. Math, 66, pp. 1321-1338
  • Craciun, G., Feinberg, M., Multiple equilibria in complex chemical reaction networks: semiopen mass action systems, SIAM (2010) J. Appl. Math, 70, pp. 1859-1877
  • Craciun, G., Garcia-Puente, L., Sottile, F., Some geometrical aspects of control points for toric patches, Mathematical Methods for Curves and Surfaces (Heidelberg) (M. Dæhlen, M. S. Floater, T. Lyche, J. L. Merrien, K. Morken, and L. L. Schumaker, eds.), Lecture Notes in Computer Science, vol. 5862 Springer, 2010, pp. 111-135
  • Craciun, G., Helton, J.W., Williams, R.J., Homotopy methods for counting reaction network equilibria (2008) Math. Biosci, 216, pp. 140-149
  • M. Feinberg, Complex balancing in general kinetic systems, Arch. Rational Mech. Anal. 49 (1972/73), 187–194; http://www.crnt.osu.edu/LecturesOnReactionNetworks, M. Feinberg, Lectures on chemical reaction networks, Available online at , (1980); Feinberg, M., (1987) Sci, 42, pp. 2229-2268
  • Feinberg, M., (1988) Sci, 43, pp. 1-25
  • Feinberg, M., The existence and uniqueness of steady states for a class of chemical reaction networks, Arch. Rational Mech (1995) Anal, 132, pp. 311-370
  • Feinberg, M., Multiple steady states for chemical reaction networks of deficiency one, Arch. Rational Mech (1995) Anal, 132, pp. 371-406
  • Feliu, E., Wiuf, C., Preclusion of switch behavior in reaction networks with mass-action kinetics (2012) Appl. Math. Comput., 219, pp. 1449-1467
  • Feliu, E., Wiuf, C., A computational method to preclude multistationarity in networks of interacting species (2013) Bioinformatics, 29, pp. 2327-2334
  • Gale, D., Nikaidô, H., The Jacobian matrix and global univalence of mappings (1965) Math. Ann., 159, pp. 81-93
  • Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V., (2008) Discriminants, resultants, and multidimensional determinants, reprint of the 1994 ed., Boston, , MA, Birkhäuser
  • M. Gleixner, D. E. Steffy, and K. Wolter, Improving the accuracy of linear programming solvers with iterative refinement, Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation (ISSAC ’12) (New York, NY, USA) (2012) ACM, pp. 187-194
  • Gnacadja, G., A Jacobian criterion for the simultaneous injectivity on positive variables of linearly parameterized polynomials maps (2012) Linear Algebra Appl., 437, pp. 612-622
  • Guldberg, C.M., Waage, P., Studies Concerning Affinity, C (1864) M. Forhandlinger: Videnskabs-Selskabet i Christiana, p. 35
  • http://vcp.med.harvard.edu/papers/crnt.pdf, J. Gunawardena, Chemical reaction network theory for in-silico biologists, Available online at , 2003; Helton, J.W., Katsnelson, V., Klep, I., Sign patterns for chemical reaction networks (2010) J. Math. Chem, 47, pp. 403-429
  • Helton, J.W., Klep, I., Gomez, R., Determinant expansions of signed matrices and of certain Jacobians, SIAM (2009) J. Matrix Anal. Appl, 31, pp. 732-754
  • Holstein, K., Flockerzi, D., Conradi, C., Multistationarity in sequential distributed multisite phosphorylation networks (2013) Bull. Math. Biol., 75, pp. 2028-2058
  • Horn, F., Necessary and sufficient conditions for complex balancing in chemical kinetics (1972) Arch. Rational Mech. Anal., 49, pp. 172-186
  • Horn, F., Jackson, R., General mass action kinetics (1972) Arch. Ration. Mech. Anal, 47, pp. 81-116
  • Itenberg, I., Roy, M.F., Multivariate Descartes’ rule (1996) Beiträge zur Algebra und Geometrie, 37, pp. 337-346
  • Joshi, B., Shiu, A., Simplifying the Jacobian criterion for precluding multistationarity in chemical reaction networks, SIAM (2012) J. Appl. Math, 72, pp. 857-876
  • Joswig, M., Theobald, T., (2013) Polyhedral and algebraic methods in computational geometry, Universitext, , Springer, London
  • Khovanskiĭ, A.G., (1991) Fewnomials, Translations of Mathematical Monographs, 88. , American Mathematical Society, Providence, RI, Translated from the Russian by Smilka Zdravkovska
  • Klee, V., Ladner, R., Manber, R., Signsolvability revisited (1984) Linear Algebra Appl, 59, pp. 131-157
  • Kubler, F., Schmedders, K., Tackling multiplicity of equilibria with Gröbner bases, Oper (2010) Res, 58, pp. 1037-1050
  • O. L. Mangasarian, Nonlinear programming, Classics in Applied Mathematics, vol. 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994, Corrected reprint of the 1969 original; Mincheva, M., Craciun, G., Multigraph conditions for multistability, oscillations and pattern formation in biochemical reaction networks (2008) Proceedings of the IEEE, 96, pp. 1281-1291
  • Müller, S., Regensburger, G., Generalized mass action systems: Complex balancing equilibria and sign vectors of the stoichiometric and kinetic-order subspaces (2012) SIAM J. Appl. Math., 72, pp. 1926-1947
  • Müller, S., Regensburger, G., Generalized mass-action systems and positive solutions of polynomial equations with real and symbolic exponents, Computer Algebra in Scientific Computing (V. P. Gerdt, W. Koepf, W. M. Seiler, and E. V. Vorozhtsov, eds.), Lecture Notes in Computer Science, vol. 8660 Springer International Publishing, 2014, pp. 302-323
  • Murray, J.D., (2002) Mathematical biology: I. An introduction, third ed., Interdisciplinary Applied Mathematics, vol. 17, , Springer-Verlag, New York
  • Pantea, C., Koeppl, H., Craciun, G., Global injectivity and multiple equilibria in uni- and bi-molecular reaction networks, Discrete Contin (2012) Dyn. Syst. Ser. B, 17, pp. 2153-2170
  • Pérez Millán, M., Dickenstein, A., Shiu, A., Conradi, C., Chemical reaction systems with toric steady states (2012) Bull. Math. Biol., 74, pp. 1027-1065
  • Rambau, J., TOPCOM: Triangulations of point configurations and oriented matroids, Mathematical software (Beijing, 2002), World Sci. Publ., River Edge (2002) NJ, pp. 330-340
  • Richter-Gebert, J., Ziegler, G.M., Oriented matroids, Handbook of discrete and computational geometry, CRC, Boca Raton (1997) FL, pp. 111-132
  • http://www-polsys.lip6.fr/~safey/RAGLib/, M. Safey El Din, RAGLib, Available online at , 2013; Sandberg, I.W., Willson, A.N., Existence and uniqueness of solutions for the equations of nonlinear DC networks, SIAM (1972) J. Appl. Math, 22, pp. 173-186
  • Savageau, M.A., Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions (1969) J. Theor. Biol., 25, pp. 365-369
  • Savageau, M.A., Voit, E.O., Recasting nonlinear differential equations as S-systems: a canonical nonlinear form (1987) Math. Biosci, 87, pp. 83-115
  • Schrijver, A., (1986) Theory of linear and integer programming, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons Ltd., , Chichester: A Wiley-Interscience Publication
  • Shinar, G., Feinberg, M., Concordant chemical reaction networks (2012) Math. Biosci, 240, pp. 92-113
  • Shinar, G., Feinberg, M., Concordant chemical reaction networks and the species-reaction graph (2013) Math. Biosci, 241, pp. 1-23
  • Sommese, A.J., Wampler, C.W., (2005) II, The numerical solution of systems of polynomials arising in engineering and science, World Scientific Publishing Co. Pte, , Ltd., Hackensack, NJ
  • Sottile and C. Zhu, Injectivity of 2D toric Bézier patches, Proceedings of 12th International Conference on Computer-Aided Design and Computer Graphics (Jinan, China) (R. Martin, H. Suzuki, and C. Tu, eds.) IEEE CPS, 2011, pp. 235-238
  • Sottile, F., Real solutions to equations from geometry (2011) University Lecture Series, 57. , American Mathematical Society, Providence, RI
  • http://www.sagemath.org, W. A. Stein et al., Sage Mathematics Software, Available online at , 2013; Struik, D.J., (ed.), A source book in mathematics, 1200-1800, Source Books in the History of the Sciences. Cambridge, Mass.: Harvard University Press, XIV (1969) 427 p.
  • Uhr, M., (2012) Structural analysis of inference problems arising in systems biology, , Ph.D. thesis, ETH Zurich
  • Wiuf, C., Feliu, E., Power-law kinetics and determinant criteria for the preclusion of multistationarity in networks of interacting species (2013) SIAM J. Appl. Dyn. Syst., 12, pp. 1685-1721
  • Ziegler, G.M., (1995) Lectures on polytopes, , Springer-Verlag, New York

Citas:

---------- APA ----------
Müller, S., Feliu, E., Regensburger, G., Conradi, C., Shiu, A. & Dickenstein, A. (2016) . Sign Conditions for Injectivity of Generalized Polynomial Maps with Applications to Chemical Reaction Networks and Real Algebraic Geometry. Foundations of Computational Mathematics, 16(1), 69-97.
http://dx.doi.org/10.1007/s10208-014-9239-3
---------- CHICAGO ----------
Müller, S., Feliu, E., Regensburger, G., Conradi, C., Shiu, A., Dickenstein, A. "Sign Conditions for Injectivity of Generalized Polynomial Maps with Applications to Chemical Reaction Networks and Real Algebraic Geometry" . Foundations of Computational Mathematics 16, no. 1 (2016) : 69-97.
http://dx.doi.org/10.1007/s10208-014-9239-3
---------- MLA ----------
Müller, S., Feliu, E., Regensburger, G., Conradi, C., Shiu, A., Dickenstein, A. "Sign Conditions for Injectivity of Generalized Polynomial Maps with Applications to Chemical Reaction Networks and Real Algebraic Geometry" . Foundations of Computational Mathematics, vol. 16, no. 1, 2016, pp. 69-97.
http://dx.doi.org/10.1007/s10208-014-9239-3
---------- VANCOUVER ----------
Müller, S., Feliu, E., Regensburger, G., Conradi, C., Shiu, A., Dickenstein, A. Sign Conditions for Injectivity of Generalized Polynomial Maps with Applications to Chemical Reaction Networks and Real Algebraic Geometry. Found. Comput. Math. 2016;16(1):69-97.
http://dx.doi.org/10.1007/s10208-014-9239-3